Владимир Арнольд - Теория катастроф

Тут можно читать онлайн Владимир Арнольд - Теория катастроф - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Арнольд - Теория катастроф краткое содержание

Теория катастроф - описание и краткое содержание, автор Владимир Арнольд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф - читать онлайн бесплатно полную версию (весь текст целиком)

Теория катастроф - читать книгу онлайн бесплатно, автор Владимир Арнольд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3. Рассмотрим многообразие всех ориентированных прямых в евклидовом пространстве. Это многообразие симплектическое, так как его можно рассматривать как фазовое пространство движения точки по сфере (направление прямой определяет точку на сфере, а точка пересечения прямой с перпендикулярной ей касательной плоскостью сферы — величину импульса).

Рассмотрим многообразие ориентированных нормалей к поверхности в нашем пространстве. Это подмногообразие в симплектическом многообразии прямых лагранжево. Гауссово отображение можно рассматривать как лагранжево отображение (отображение проектирования построенного подмногообразия на сферу, являющуюся базой лагранжева расслоения фазового пространства).

Таким образом, теории градиентных, нормальных и гауссовых особенностей сводятся к теории лагранжевых особенностей.

Встретившаяся нам в конце симплектическая структура многообразия ориентированных прямых — не столь искусственное образование, как это кажется на первый взгляд. Дело в том, что множество решений любой вариационной задачи (или вообще множество решений уравнений Гамильтона с фиксированным значением функции Гамильтона) образует симплектическое многообразие, очень полезное для исследования свойств решений.

Рассмотрим, например, двухпараметрическое семейство лучей, срывающихся с геодезических на поверхности препятствия в трехмерном пространстве, как это указано на рис, 72, Это семейство оказывается двухмерным лагранжевым подмногообразием четырехмерного пространства всех лучей. Но в отличие от ранее встречавшихся нам лагранжевых подмногообразий это лагранжево многообразие само имеет особенности. Особенности эти проявляются там, где срывающийся луч — асимптотический для поверхности препятствия, Такие лучи образуют ребро возврата (типа х 2= у 3) лагранжева многообразия срывающихся лучей.

На этом ребре возврата есть еще особые точки, в окрестности которых многообразие срывающихся лучей устроено как раскрытый ласточкин хвост (поверхность в четырехмерном пространстве многочленов х 5+ ах 3+ bх 2+ сх + d, образованная многочленами с трехкратными корнями).

Эта поверхность встречается также в других задачах теории особенностей (например, при исследовании заметания каустики ребрами возврата движущихся волновых фронтов) и является, видимо, одним из основных примеров будущей теории лагранжевых многообразий с особенностями,

В евклидовой и в римановой геометрии имеется обширная теория внешней кривизны: кроме внутренних свойств подмногообразия, определяемых его метрикой, имеются еще различия в расположении подмногообразий с одинаковыми внутренними геометриями в объемлющем пространстве.

В симплектической геометрии, как недавно доказал А. Б, Гивенталь, дело обстоит проще: внутренняя геометрия (сужение симплектической структуры на множество касательных векторов к подмногообразию) определяет внешнюю. Иными словами, подмногообразия с одинаковой внутренней геометрией локально переводятся друг в друга сохраняющим симплектическую структуру диффеоморфизмом объемлющего пространства .

Здесь открывается новая глава теории особенностей — исследование особенностей расположения подмногообразий в симплектическом пространстве, на важность которого обратил внимание Р. Мельроз в недавних работах по дифракции. Начало классификации таких особенностей получается, по теореме Гивенталя, из результатов Ж. Мартине и его последователей о вырождениях симплектической структуры. Например, двухмерное подмногообразие общего положения в четырехмерном симплектическом пространстве локально приводится сохраняющим симплектическую структуру преобразованием к одной из двух нормальных форм:

р 2= q 2= 0 или q 1= 0, р 2= р 2 1.

На нечетномерных многообразиях не бывает симплектических структур, но зато бывают контактные. Контактная геометрия играет для оитики и теории распространения волн такую же роль, как симплектическая для механики.

Контактная структура на нечетномерном многообразии определяется выбором в касательном пространстве в каждой точке гиперплоскости (подпространства коразмерности один). Два поля гиперплоскостей на многообразии фиксированной размерности локально эквивалентны (переводятся друг в друга диффеоморфизмом), если только оба они общего положения вблизи изучаемых точек.

Контактной структурой называется поле гиперплоскостей являющееся полем общего положения вблизи каждой точки нечетномерного многообразия.

Контактным является многообразие всех линейных элементов на плоскости. Оно трехмерно. Контактная структура задается так: скорость движения элемента принадлежит (гипер) плоскости поля, если скорость движения точки приложения принадлежит элементу. Точно так же определяется контактная структура в 2n — 1-мерном многообразии элементов гиперплоскостей на любом n-мерном многообразии.

Роль лагранжевых многообразий в контактном случае переходит к лежандровым (интегральным подмногообразиям поля гиперплоскостей наибольшей возможной размерности, т. е. размерности m в контактном многообразии размерности 2m + 1).

Особенности волновых фронтов, преобразований Лeжандра, а также гиперповерхностей, двойственных к гладким, — это лежандровы особенности. Вся симплектическая теория (включая, например, теорему Гивенталя) имеет контактные аналогу чрезвычайно полезные для исследования особенностей в вариационных задачах.

Распространение волн в сплошных средах описывается световой гиперповерхностью в контактном пространстве (называемой также "дисперсионным соотношением" или "многообразием нулей главного символа" в пространстве контактных элементов пространства-времени).

Для волн, описываемых вариационными принципами с гиперболическими уравнениями Эйлера — Лагранжа, указанная гиперповерхность, вообще говоря, имеет особенности.

Многообразие особенностей световой гиперповерхности типичной вариационной системы имеет коразмерность 3 в контактном пространстве. На трансверсальном к многообразию особенностей трехмерном пространстве световая гиперповерхность оставляет след, диффеоморфный квадратичному конусу u 2+ υ 2= ω 2.

Особенности световых лучей и волновых фронтов определяются расположением световой гиперповерхности по отношению к контактной структуре (лучи — это проекции ее характеристик, а фронты — ее лежандровых многообразий). Анализ типичных расположений обнаруживает своеобразное явление внутреннего рассеяния волн на неоднородностях среды.

Обычно волны разных типов (скажем, продольные и поперечные) распространяются внутри среды независимо и лишь на границе могут порождать друг друга. Здесь же трансформация волн осуществляется во внутренних точках среды. Например, при распространении волн в одномерной нестационарной, неоднородной среде рассеяние в отдельные моменты времени испытывают отдельные лучи. Соответствующие характеристики в пространстве-времени касаются в одной точке (рис. 74).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Арнольд читать все книги автора по порядку

Владимир Арнольд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теория катастроф отзывы


Отзывы читателей о книге Теория катастроф, автор: Владимир Арнольд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x