Владимир Арнольд - Теория катастроф

Тут можно читать онлайн Владимир Арнольд - Теория катастроф - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Арнольд - Теория катастроф краткое содержание

Теория катастроф - описание и краткое содержание, автор Владимир Арнольд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф - читать онлайн бесплатно полную версию (весь текст целиком)

Теория катастроф - читать книгу онлайн бесплатно, автор Владимир Арнольд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рис 74 Трансформация волн в одномерной среде Кривые 1 3 и 2 4 на этом рисунке - фото 77

Рис. 74. Трансформация волн в одномерной среде

Кривые 1 3 и 2 4 на этом рисунке — гладкие, с касанием первого порядка. Касающиеся характеристики — это 1 4 и 2 3. На типичном волновом фронте, движущемся в трехмерном пространстве, трансформация волн происходит в отдельных изолированных точках.

За последние годы симплектическая и контактная геометрии появляются во всех отделах математики; как у каждого жаворонка должен появиться хохолок, так всякая область математики в конце концов симплектизируется. В математике есть ряд операций разных уровней: функции действуют на числа, операторы — на функции, функторы — на операторы и т. д. Симплект.изация относится к небольшому числу операций самого высшего уровня, действующих не на какие-нибудь мелочи (функции, категории, функторы), а на всю математику сразу. Хотя известно уже несколько таких операций высшего уровни (например, алгебраизация, бурбакизация, комплексификация, суперизация, симплектизация), для них нет никакой аксиоматической теории.

15. Комплексные особенности

Математики хорошо знают, что переход к комплексным числам обычно не усложняет, а упрощает задачу. Например, всякое алгебраическое уравнение степени n имеет ровно n комплексных корней, в то время как нахождение числа вещественных корней — нелегкая задача.

Причина этого явления состоит в следующем. Одно комплексное уравнение — это два вещественных. Множества, заданные двумя уравнениями (скажем, линии в пространстве или точки на плоскости) называются множествами коразмерности два. Множества коразмерности два не разделяют объемлющее пространство. Поэтому от любой точки пространства вне множества коразмерности два можно добраться до любой другой такой точки путем, обходящим это множество.

Рассмотрим пространство каких-либо комплексных объектов (скажем, многочленов фиксированной степени с комплексными коэффициентами). Особые объекты (скажем, многочлены с кратными корнями) определяются комплексным уравнением на коэффициенты. Следовательно, множество особых объектов имеет коразмерность два и не делит пространство всех объектов . Например, комплексный ласточкин хвост, образованный в пространстве комплексных многочленов х 4+ ах 2+ bх + с многочленами с кратными корнями, не делит пространство всех таких многочленов (вещественно шестимерное).

Поэтому от любого неособого комплексного объекта (например, многочлена без кратных корней) к любому другому можно перейти непрерывным путем, оставаясь среди неособых объектов (в примере — среди многочленов без кратных корней). Но при малой деформации неоеобого объекта его топология не меняется (скажем, число корней многочлена без кратных корней не меняется при достаточно малом изменении коэффициентов). Следовательно, топологические инварианты одинаковы у всех неособых объектов данного класса (например, число комплексных корней всех многочленов данной степени без кратных корней одинаково). Итак, остается изучить топологию одного неособого комплексного объекта (найти число комплексных корней одного уравнения без кратных корней) [8] Достаточно взять уравнение (х — 1) ... (х — n) = 0; к приведенным рассуждениям остается добавить очень немного, чтобы получить вполне строгое доказательство "основной теоремы алгебры", по которой всякое уравнение степени n имеет n комплексных корней. , чтобы узнать топологию всех. Напротив, в вещественном случае множество особых объектов делит пространство всех объектов на части. Например, обычный ласточкин хвост (рис. 34) делит пространство вещественных многочленов х 4+ ах 2+ bх + с на 3 части: в одной лежат многочлены с четырьмя вещественными корнями, в другой с двумя, в третьей — без вещественных корней (сообразите, в какой части сколько корней!).

Рассмотрим теперь в качестве объектов кривые, заданные на плоскости (х, у) условием f (х, у) = 0, где f — какой-либо многочлен фиксированной степени. Например, если степень равна 2, то неособая кривая будет, как правило, эллипсом или гиперболой (все другие кривые второго порядка соответствуют исключительным, особым случаям).

Множество пар комплексных чисел (х, у), удовлетворяющих уравнению f (х, у) = 0, называется комплексной кривой . С вещественной точки зрения это двумерная поверхность в четырехмерном пространстве. Как правило почти при любых коэффициентах многочлена f) комплексная кривая — неособая. Из предыдущих рассуждений следует, что все неособые кривые данной степени топологически одинаковы. Чтобы найти топологию этих поверхностей, достаточно поэтому изучить одну из неособых комплексных кривых данной степени.

Ответ оказывается таким: поверхность получается из сферы приделыванием g = (n — 1 )(n — 2)/2 ручек и выкидыванием из образовавшейся поверхности n точек. Например, комплексная прямая (n = 1) — это вещественная плоскость (сфера без одной точки), комплексная окружность — вещественный цилиндр (сфера без двух точек)" комплексная кривая степени 3 топологически устроена как поверхность тора, проколотая в трех местах.

Рис 75 Риманова поверхность плоской алгебраической кривой Самый простой - фото 78

Рис. 75. Риманова поверхность плоской алгебраической кривой

Самый простой способ в этом убедиться — получить неособую кривую небольшим шевелением из набора п прямых. Начнем, скажем, с n вещественных прямых, расположенных общим образом на плоскости и потому пересекающихся в n (n — 1)/2 точках (рис. 75). Каждая прямая задается линейным неоднородным уравнением вида l = 0, где l = ах + by + с. Перемножим соответствующие n прямым линейные функции I. Произведение обращается в нуль в точности на n прямых. Замена распадающейся на прямые кривой f = 0 на неособую кривую f = (малое число) и есть нужное шевеление.

При переходе к комплексным х и у каждая прямая становится в вещественном смысле плоскостью, так что кривая f = О превращается при комплексификации в набор n плоскостей. Каждые две такие плоскости в четырехмерном пространстве пересекаются по точке (ведь точки при комплексификации так и остаются точками). При описанном выше шевелении поверхность становится гладкой. Сглаживание устроено так: окрестность точки пересечения на каждой из обеих пересекающихся плоскостей выкидывается и затем две образовавшихся окружности склеиваются друг с другом (так, чтобы получилась ориентируемая поверхность).

Например, из трех попарно пересекающихся по точке сфер при сглаживании трех точек пересечения получается тор (рис. 75), Точно так же из п сфер получается сфера с (п — 1) (п — 2)/2 ручками, а из n плоскостей — сфера со столькими же ручками без n точек.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Арнольд читать все книги автора по порядку

Владимир Арнольд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теория катастроф отзывы


Отзывы читателей о книге Теория катастроф, автор: Владимир Арнольд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x