Наум Виленкин - В поисках бесконечности

Тут можно читать онлайн Наум Виленкин - В поисках бесконечности - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Наука, год 1983. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Наум Виленкин - В поисках бесконечности краткое содержание

В поисках бесконечности - описание и краткое содержание, автор Наум Виленкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ.
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.

В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)

В поисках бесконечности - читать книгу онлайн бесплатно, автор Наум Виленкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И когда люди уже научились выражать числами количество воинов в армии или хлебов, необходимых для прокормления рабов, которые возводили колоссальные храмы и пирамиды, они еще не знали чисел, носящих сейчас названия миллиард, триллион, квадрильон и т. д. Чтобы дать представление о громадных числах, они прибегали к сравнениям: "сколько песка и пыли", "как число песку на бреге морском", "как вес горы, взвешенной на весах", "как листьев на деревьях". Но самый лучший тогдашний ученый не смог бы сказать, например, чего больше:

песчинок на морском берегу или листьев в лесу.

В Древней Греции метод называния очень больших чисел был создан Архимедом лишь в III в. до н. э.( то есть через два с половиной столетия после того, как философы начали обсуждать понятие беспредельности. В сочинении "Псаммит" ("Исчисление песчинок") он развил систему счисления, позволявшую называть числа до 10 8*1016. Насколько громадно это число, видно из того, что всю нашу Метагалактику можно было бы плотно набить не более чем 10 150нейтронами. Если записать число Архимеда в десятичной системе счисления по 400 цифр на каждом метре бумажной ленты, то луч света шел бы вдоль такой ленты около восьми суток.

Но как ни громадно число Архимеда, оно все же, как и все числа, конечно. Записать весь бесконечный ряд натуральных чисел невозможно даже на ленте, смотанной в клубок размером со всю нашу Метагалактику. Нельзя записать его и на ленте, смотанной во столько подобных клубков, каково число Архимеда.

Тягу к большим числам испытывали и древние обитатели Индии. В их сказаниях рассказывается, например, о битвах, в которых приняло участие 10 23обезьян, об испытаниях Будды, в ходе которых он называл громадные числа, и о многих таких же вещах. Веселой игре с числами не мешало то обстоятельство, что вся Солнечная система по смогла бы вместить столько обезьян — в ней находила свое воплощение идея о бесконечности, завораживавшая не только греков, но и индийцев. И Архимед, и индийские математики испытывали восторг от мысли, что создано символическое исчисление, позволяющее на небольшой восковой дощечке или листе папируса выразить столь необъятные числа и выйти за пределы данного наглядным созерцанием.

Загадочные апории [6] Апория — кажущееся трудно разрешимым, непреодолимым логическое затруднение. .

Идея бесконечности проникала в науку не только в связи с вопросами о том, есть ли границы у Вселенной, и было ли начало, и будет ли конец мира. Одним из самых жгучих вопросов, над которым билась мысль древнегреческих философов, явилось устройство мира в малом. Повседневный опыт учил, что вынутый из печи хлеб можно разделить между двумя, тремя, от силы десятью участниками трапезы, а если раскрошить его, то получится все же не более мириады, то есть десяти тысяч крошек. Можно ли делить далее этот хлеб, есть ли вообще предел для делимости материальных предметов на части? Ответить на этот вопрос, опираясь только на опыт, было невозможно. Здесь речь шла о столь мелких частицах, что разглядеть их не смог бы и сам рысьеглазый Линией, легендарный впередсмотрящий на корабле аргонавтов. Поэтому вопрос о пределе делимости вещей перешел из сферы опыта в сферу умозрительных рассуждений.

Одни философы утверждали, что предела делимости вещества нет. Анаксагор говорил, что "в малом не существует наименьшего, но всегда есть еще меньшее. Ибо то, что существует, не может перестать существовать от деления, как бы далеко ни было продолжено последнее". Он считал, что непрерывное не может состоять из дискретных элементов, которые "отделены друг от друга и как бы отрублены друг от друга ударами топора". Надо думать, что собрание отдельных точек представлялось Анаксагору и его сторонникам чем-то вроде кучи пыли, а непрерывное — чем-то вроде бронзового или железного меча.

Другая школа, ведшая свое начало от пифагорейцев, полагала, что существуют наименьшие частицы вещества — атомы, которые уже далее не делятся в силу своей твердости (атом и значит по-гречески "неделимый"). Эти идеи были развиты Левкиппом [7] Левкипп (предположительно 500-440 до в. э.) — древнегреческий философ, атомист. и Демокритом. Атомисты ввели понятие и о неделимых частях пространства ( амерах ), не имеющих ни частей, ни размеров. Некоторые ученые полагают, что эти идеи восходят к Демокриту, другие приписывают их Эпикуру [8] Эпикур (ок. 341-271 до н. э.) — древнегреческий философ, атомист. . Решить этот спор весьма затруднительно, так как до нас дошли лишь скудные отрывки из многочисленных сочинений Демокрита.

Борьба между двумя школами философов обострилась после того, как в середине V в. до н. э. греческий философ Зенон Элейский [9] Зенон Элейский (ок. 490-430 до н. э.) — древнегреческий философ, автор апорий, направленных против множественности, бесконечности, движения и наивного представления о континууме. показал, к каким парадоксальным следствиям ведет при неосторожном обращении предположение о безграничной делимости пространства и времени. Наиболее известны апории Зенона "Стрела" и "Ахиллес и черепаха". В первой из них доказывалось, что... летящая стрела неподвижна. Ведь, говорил Зенон, стрела, прежде чем попасть в цель, должна пролететь половину пути, а до этого — одну четверть пути, еще ранее — одну восьмую пути и т. д. А так как пространство безгранично делимо, то процесс деления пополам никогда не окончится. Поэтому стрела никогда не начнет движения и всегда будет неподвижна. В апории "Ахиллес и черепаха" таким же образом доказывалось, что быстроногий Ахиллес, пробегающий в минуту 10 стадиев, никогда не нагонит медлительную черепаху, делающую 1 стадий в минуту.

Выводы Зенона об отсутствии движения в реальном мире опровергались повседневным опытом. Известный философ-киник Диоген [10] Диоген Самосский (ок. 414-323 до н. э.) -древнегреческий философ. , услышав про рассуждения Зенона, просто встал и начал ходить (этому происшествию посвящено известное стихотворение А. С. Пушкина "Движенья нет, сказал мудрец брадатый..."). Тем не менее аргументы Зенона показали, что представления о бесконечности, господствовавшие в тогдашней математике, были весьма наивны. В частности, Зенон впервые показал, что отрезок можно разложить на бесконечное множество частей, каждая из которых имеет ненулевую длину. Если заменить геометрический отрезок конечным отрезком времени, то из его рассуждений вытекало еще более парадоксальное утверждение: за 1 час можно произнести названия всего бесконечного ряда натуральных чисел. Для этого достаточно в течение первого получаса назвать первое число, в течение следующей четверти часа — второе число, за следующую восьмую долю часа — третье число и т. д. Получалось, что бесконечное можно поместить в конечном — бесконочный числовой ряд в конечном промежутке времени.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Наум Виленкин читать все книги автора по порядку

Наум Виленкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




В поисках бесконечности отзывы


Отзывы читателей о книге В поисках бесконечности, автор: Наум Виленкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x