Наум Виленкин - В поисках бесконечности

Тут можно читать онлайн Наум Виленкин - В поисках бесконечности - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Наука, год 1983. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Наум Виленкин - В поисках бесконечности краткое содержание

В поисках бесконечности - описание и краткое содержание, автор Наум Виленкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ.
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.

В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)

В поисках бесконечности - читать книгу онлайн бесплатно, автор Наум Виленкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В это время многие ученые пытались понять, как связаны "дикие" функции, открытые Дирихле и Риманом, Борелем и Лебегом, с функциями, которыми занимались предшествующие поколения ученых. Лузин доказал, что путем "исправления" разрывной функции на множестве сколь угодно малой меры из нее можно получить непрерывную функцию. А непрерывную функцию можно с любой степенью точности приблизить многочленом. Тем самым наиболее запутанно устроенные функции в некотором смысле слова сводились к наиболее изученным — многочленам.

Одновременно с этим Лузин изучал проблемы, связанные с тригонометрическими рядами,- вопросом, который традиционно интересовал специалистов по теории функций действительного переменного еще со времен самых первых работ Кантора. Здесь он также доказал ряд интереснейших теорем, выявивших тонкие механизмы, управляющие сходимостью таких рядов. Эти и многие другие доказанные Лузиным теоремы легли в основу представленной им на соискание ученой степени магистра чистой математики диссертации "Интеграл и тригонометрический ряд". Научные достоинства этой диссертации были настолько высоки, что, несмотря на сопротивление некоторых математиков классического направления, ему была присуждена сразу ученая степень доктора чистой математики — случай, весьма редкий в практике русских университетов.

Научный энтузиазм Лузина, новизна его идей, незаурядный педагогический талант привлекали к нему многих наиболее талантливых молодых математиков, большинство из которых примкнуло к нему еще на студенческой скамье. Многие из них еще до окончания университета получили крупные научные результаты. Многие годы ученые пытались доказать, что если тригонометрический ряд сходится к нулю почти всюду (то есть всюду, кроме множества нулевой меры), то все его коэффициенты равны нулю. Ко всеобщему изумлению студент Дмитрий Евгеньевич Меньшов [88] Меньшов Дмитрий Евгеньевич (р. 1892) — советский математик, автор выдающихся работ по теории тригонометрических и ортогональных рядов. показал, что это не так. Построенный им пример был весьма замысловат, как и многие примеры, которые с таким блеском строил и сам Николай Николаевич, и его ученики. С работы Меньшова начался ряд исследований по открытой им проблематике. Сильные результаты получила в этой области Нина Карловна Бари [89] Бари Нина Карловна (1901-1961) — советский математик, автор работ по теории тригонометрических рядов. , которая позднее написала прекрасную книгу о тригонометрических рядах. Рядом вопросов теории таких рядов занимался в студенческие годы Андрей Николаевич Колмогоров. Ему принадлежит удивительный пример интегрируемой по Лебегу функции, для которой соответствующий тригонометрический ряд всюду расходится.

Другое направление работ учеников Лузина было связано с исследованием строения борелевских множеств. Чтобы доказать, что любое такое множество либо счетно, либо содержит подмножество мощности континуума, Павел Сергеевич Александров придумал еще на студенческой скамье остроумнейшую конструкцию, с помощью которой можно было получить любое такое множество (в его честь ее называют теперь A-операцией). Через некоторое время другой молодой ученик Лузина, Михаил Яковлевич Суслин [90] Суслин Михаил Яковлевич (1894-1919) — русский математик, один из создателей дескриптивной теории множеств. , доказал, что с помощью A-операций можно получать и некоторые множества, не являющиеся борелевскими. Возник вопрос об описании этого класса множеств, называемых теперь суслинскими. К сожалению, безвременная смерть от сыпного тифа в 1919 г. прервала исследования Суслина. Решением возникших проблем занялся сам Лузин, к которому потом примкнули Петр Сергеевич Новиков [91] Новиков Петр Сергеевич (1901-1975) — советский математик, автор выдающихся работ по дескриптивной теории множеств и математической логике. и Людмила Всеволодовна Келдыш [92] Келдыш Людмила Всеволодовна (1904-1976) — советский математик, автор работ по дескриптивной теории множеств. . Полученные ими результаты стали основой, на которой выросло новое направление математики — дескриптивная теория множеств. Дальнейшие исследования в этом направлении гутронули самую сущность основ теории множеств, показали границы теоретико-множественного мышления. Многие из проблем, решенных в настоящее время, были поставлены в работах Лузина, причем получаемые результаты подтверждают его глубокие предвидения.

Большое внимание уделял Лузин приложению своих идей к вопросам классического анализа, в частности, к теории функций комплексного переменного.

В результате деятельности Лузина и его учеников Москва стала общепризнанным центром научных исследований в области теории функций действительного переменного. Этому не смогли помешать ни первая мировая и гражданская войны, ни интервенция, ни блокада. В Польше идеи Лузина развивал Вацлав Серпинский [93] Серпинский Вацлав (1882-1969) — польский математик, основатель польской математической школы. Автор работ по теории функций действительного переменного, топологии, теории чисел. , который в годы первой мировой войны жил в Москве и общался с Лузиным.

Можно было бы назвать многих и многих учеников Лузина, большинство из которых являются славой и гордостью советской науки. Многие из них стали впоследствии действительными членами и членами-корреспондентами АН СССР, математиками с мировой известностью. Так возникла одна из самых замечательных научных школ, которая, как уже говорилось выше, получила по имени своего основателя и главы название "Лузитания". Это было сообщество молодых математиков, связанных друг с другом горячей любовью и живым бескорыстным интересом к математической науке.

Следует отметить, что из-за чрезмерной поглощенности проблемами теории множеств и функций действительного переменного лузитане иногда недооценивали важность классических направлений в математике. Но впоследствии научные интересы многих из них сдвинулись в области, лежавшие гораздо ближе к практическим задачам. Например, как уже упоминалось, А. Н. Колмогоров применил идеи лебеговой меры в теории вероятностей, а потом стал заниматься практическими приложениями этой теории. Даже такой видный представитель прикладной математики, как Михаил Алексеевич Лаврентьев [94] Лаврентьев Михаил Алексеевич (1900-1980) — советский математик и механик, один из основателей Сибирского отделения АН СССР. Автор выдающихся работ в области теории функций, квазиконформных изображений, аэро- и гидродинамики. , в молодые годы занимался тончайшими исследованиями по теории множеств.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Наум Виленкин читать все книги автора по порядку

Наум Виленкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




В поисках бесконечности отзывы


Отзывы читателей о книге В поисках бесконечности, автор: Наум Виленкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x