Наум Виленкин - В поисках бесконечности

Тут можно читать онлайн Наум Виленкин - В поисках бесконечности - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Наука, год 1983. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Наум Виленкин - В поисках бесконечности краткое содержание

В поисках бесконечности - описание и краткое содержание, автор Наум Виленкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ.
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.

В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)

В поисках бесконечности - читать книгу онлайн бесплатно, автор Наум Виленкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Большие ирригационные работы.

Проследить в рамках этой книги за всеми областями математики, которыми стали заниматься бывшие лузитане, совершенно невозможно — для этого надо было бы написать книгу по истории советской математики. Мы расскажем лишь о том, как идеи теории бесконечных множеств были применены в топологии — науке о свойствах фигур, остающихся неизменными при преобразованиях самого общего вида. Надо только, чтобы эти преобразования были взаимно однозначными и чтобы не было ни разрывов, ни склеек. Первоначально топологи изучали лишь фигуры, которые можно разбить на конечное число простейших фигур, называемых симплексами (точек, отрезков, треугольников, тетраэдров). Но потом они применили свои идеи к множествам гораздо более сложного строения. И тут выяснилось, что геометрическая интуиция, верно служившая им раньше, дает неверные ответы на многие вопросы.

Рис 30 Несколько удивительных примеров кривых и областей на плоскости построил - фото 58

Рис. 30

Несколько удивительных примеров кривых и областей на плоскости построил голландский математик Брауэр [95] Брауэр Лёйтзен (1881 — 1966) — голландский математик, автор важных результатов в области топологии, функционального анализа, математической логики. . Мы расскажем сейчас об одном из самых удивительных среди этих примеров. Нарисуем карту какой-нибудь страны и сопредельных с ней стран. Почти каждая точка границы этой страны принадлежит двум и только двум странам: данной и одной из сопредельных. Поэтому в каждой точке границы стоят два пограничника: один из этой страны, а другой — из сопредельной. Есть на карте несколько точек, где сходятся три страны (рис. 30). В таких точках стоят уже три пограничника. Но таких мест на карте лишь конечное число. И кажется совершенно очевидным, что такие точки не могут заполнить всю границу страны, то есть что не может быть трех областей (трех стран), имеющих одну и ту же общую границу. Иными словами, кажется очевидным, что три пограничника из трех разных стран не могут стоять в каждой точке границы.

А Брауэр построил такие три области. Чтобы понять этот пример, представим себе, что в океане есть остров, на котором находятся два озера с пресной водой. Только в одном озере вода холодная, а в другом — теплая. Теперь проведем следующие ирригационные работы. В течение первых суток проведем каналы от океана и от обоих озер так, чтобы каждый из этих каналов был "слепым" (то есть только заливом соответствующего водоема), чтобы эти каналы нигде не соприкасались друг с другом и чтобы в результате расстояние каждой точки суши до океанских вод, а также до вод обоих озер было меньше 1 километра (рис. 31).

Рис 31 В следующую половину суток продолжим эти каналы так что они - фото 59

Рис. 31

В следующую половину суток продолжим эти каналы так, что они по-прежнему остаются "слепыми" и не соприкасаются между собой, а расстояние от каждой точки суши до любого из трех каналов становится меньше, чем 1/ 2километра. При этом, конечно, каналы должны стать более узкими, чем ранее. В следующую четверть суток каналы продолжаются дальше так, чтобы каждая точка суши отстояла от любого канала меньше, чем на 1/ 4километра, и т. д. С каждым шагом каналы становятся все извилистее и извилистее, все уже и уже. Через двое суток такой работы весь остров будет пронизан этими тремя каналами и превратится в канторову линию. Стоя в любой точке этой линии, можно зачерпнуть, по желанию, соленой, теплой пресной или холодной пресной воды. При этом воды не смешиваются друг с другом, Если бы вместо океана и озер мы взяли три страны, то получили бы ту удивительную картину, о которой говорили вначале,- в каждой точке границы можно поставить трех пограничников — по одному от каждой страны.

"Недиссертабельная" тема.

У канторова определения линии был один недостаток — оно совсем не годилось для пространственных кривых. А уж что такое поверхность в пространстве, определить таким образом было весьма сложно, так как и кривые, и поверхности являются континуумами без внутренних точек. Эту задачу — выяснить, чем отличаются в пространстве кривые от поверхностей,- поставил летом 1921 г. Д. Ф. Егоров перед П. С. Урысоном [96] Урысон Павел Самуилович (1898-1924) — советский математик, автор важных работ в области теоретико-множественной топологии, один из создателей общей теории размерности. (как видно, он больше думал о математической значительности проблемы, чем, как теперь иногда говорят, о "диссертабельности" темы — задача-то была одной из труднейших!).

Вскоре Урысон понял, что задача Егорова лишь частный случай гораздо более общей проблемы: что такое размерность геометрической фигуры, то есть сколько измерений она имеет, почему надо говорить, что отрезок или окружность имеют размерность 1, квадрат — размерность 2, а куб или шар — размерность 3? Вот как вспоминает об этом периоде жизни П. С. Урысона его ближайший друг П. С. Александров: "...Все лето 1921 года прошло в напряженных попытках найти "настоящее" определение (размерности), причем П. С. переходил от одного варианта к другому, постоянно строя примеры, показывавшие, почему тот или иной вариант надо отбросить. Это были два месяца действительно всепоглощающих размышлений. Наконец, в одно утро в конце августа II. С. проснулся с готовым, окончательным и всем теперь хорошо известным индуктивным определением размерности... В то же утро во время купания в Клязьме П. С. Урысон рассказал мне свое определение размерности и тут же, во время этого разговора, затянувшегося на несколько часов, набросал план всего построения теории размерности с целым рядом теорем, бывших тогда гипотезами, за которые неизвестно было, как и взяться, и которые затем доказывались одна за другой в течение последующих месяцев. Никогда потом я не был участником или свидетелем математического разговора, который состоял бы из такого сплошного потока новых мыслей, как в то августовское утро. Вся набросанная тогда программа полностью осуществилась в течение зимы 1921/22 года; к весне 1922 года вся теория размерности была готова...". \

Основная идея определения размерности по Урысону заключается в следующем. Чтобы отделить часть линии от всей остальной линии обычно достаточно двух или нескольких точек (на рис. 32 часть четырехлепестковой розы, содержащая центр, отделяется от остальной розы восемью точками). Но часть поверхности уже невозможно отделить от всей поверхности несколькими точками — для этого обязательно потребуется целая линия: сколько бы точек ни взять на поверхности, их всегда можно обойти. Точно так же часть трехмерного пространства отделяется от всего остального пространства поверхностью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Наум Виленкин читать все книги автора по порядку

Наум Виленкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




В поисках бесконечности отзывы


Отзывы читателей о книге В поисках бесконечности, автор: Наум Виленкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x