Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Тут можно читать онлайн Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - бесплатно ознакомительный отрывок. Жанр: Математика, издательство КоЛибри, Азбука-Аттикус, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
  • Автор:
  • Жанр:
  • Издательство:
    КоЛибри, Азбука-Аттикус
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-389-17644-7
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности краткое содержание

Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - описание и краткое содержание, автор Ласло Мерё, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы. Он утверждает, что, хотя Вселенная, в которой мы живем, по сути своей дика, нам выгоднее считать, что она подчиняется законам Тихонии. Это представление может стать самоисполняющимся пророчеством и создать посреди чрезвычайно бурного моря островок предсказуемости. Делая обзор с зыбких границ между экономикой и теорией сложности, Мерё предлагает распространить область применения точных наук на то, что до этого считалось не поддающимся научному анализу: те непредсказуемые, неповторимые, в высшей степени маловероятные явления, которые мы обычно называем чудесами.
Если вы примете приглашение Ласло Мерё, вы попадете в мир, в котором чудеса — это норма, а предсказуемое живет бок о бок с непредсказуемым. Попутно он раскрывает секреты математики фондовых рынков и объясняет живо, но математически точно причины биржевых крахов и землетрясений, а также рассказывает, почему в «черных лебедях» следует видеть не только бедствия, но и возможности.
(Альберт-Ласло Барабаши, физик, мировой эксперт по теории сетей)

Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - читать онлайн бесплатно ознакомительный отрывок

Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ласло Мерё
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Простота хаоса

Хаос в том смысле, в котором используют это слово математики и физики, никоим образом не исключает возможности стабильности. Более того, он даже гарантирует некоторые виды стабильности, хотя и не в том смысле, который знаком нам по повседневной жизни.

Математики и физики считают систему хаотической, если она обладает следующими тремя свойствами:

1. Состояние системы определяется малым числом переменных (от пяти до десяти), причем очень простым образом.

2. Система чрезвычайно чувствительна к малым изменениям начального состояния.

3. На некотором этапе развития система оказывается сколь угодно близка ко всем состояниям, которых она теоретически может достичь, хотя и не обязательно достигнет каждого из возможных состояний.

Как и все математические утверждения, эти три условия изложены здесь слишком сжато, чтобы их можно было понять без дальнейших объяснений. Рассмотрим их несколько подробнее, чтобы понять, что можно считать хаосом, а что нельзя.

Первое условие отражает то наблюдение, что даже очень простые уравнения могут иметь чрезвычайно сложные решения. Примером такой ситуации служит двойной маятник: хотя его движение можно описать тремя простыми уравнениями, маятник может двигаться по чрезвычайно сложной траектории. Суть математического хаоса в том и заключается, что он может быть порожден необычайно простыми, и даже полностью детерминированными, условиями.

Второе условие — это другая формулировка «эффекта бабочки». Отличительным свойством хаотических систем является то обстоятельство, что малые отклонения, как правило, не сглаживаются, а усиливаются системой. Поэтому даже при наличии уравнений движения хаотической системы (например, двойного маятника) мы не можем предсказать, в какое состояние эта система в конце концов придет, потому что в системах реального мира невозможны абсолютно точные измерения и любые начальные значения, которые мы вводим в уравнения движения, неизбежно отличаются — пусть даже на ничтожно малую величину — от значений истинных, а даже мельчайшие отклонения начальных значений порождают по мере развития системы огромные различия.

Третье условие говорит нам, что хаос не равен полному беспорядку. Случайный шум — например, радиопомехи или возмущения воды в бурной реке — не есть хаотическая система. Радиопомехи абсолютно случайны, в хаосе же нет ничего случайного. Хаос кажется в высшей степени иррегулярным, но далеко не все то, что кажется «хаотичным», действительно хаотично. Третье условие добавляет и еще кое-что. Когда двойной маятник качается, его траектория оставляет на бумаге плотный клубок каракулей и рано или поздно подходит сколь угодно близко ко всем точкам, которых она может достигнуть. Но при этом эта траектория подчиняется простому принципу конструкции маятника; в ней нет ничего случайного! Таким образом, третье условие означает также, что хаотическая система в конце концов заполняет все предоставленное ей пространство, в том смысле, что в области действия системы нет ни одного участка, на который система рано или поздно не проникнет, каким бы малым он ни был. В некотором смысле можно сказать, что хаос осуществляет принцип, утверждающий, что природа не терпит пустоты.

В таком, формальном, смысле слова хаос не есть состояние полной неразберихи. Именно в этом на самом деле и состоит его суть: система, проявляющая хаотические с математической точки зрения свойства, выглядит хаотической, но подчиняется простому набору правил. Существуют структуры и еще более сложные, чем хаос. Я только назову их: броуновское движение, турбулентность, вихревое течение. Эти в высшей степени сложные структуры не считаются хаотическими. Возможно, самое интересное свойство хаоса — это его теоретическая простота.

Математики и физики часто испытывают неприязнь к чрезмерно сложным системам, в особенности потому, что даже простые системы часто бывают неразрешимыми. У природы такой неприязни не бывает. Природа ничего не пытается решить. В природном мире объекты просто возникают в соответствии с законами физики, химии и биологической эволюции, и природа решает, какие из них в итоге выживут, а какие — исчезнут, не спрашивая, не слишком ли сложной оказалась та или иная структура.

Структура человеческого мозга в значительной степени определяется информацией, закодированной в ДНК, и, хотя наш мозг содержит гораздо больше переменных, чем те пять или десять, которых требует первое условие хаоса, тем не менее в самом мозге этих переменных заключено на много порядков меньше, нежели в том количестве информации, что необходимо для его описания. Природа истолковывает первое условие в гораздо более крупном масштабе, чем математики и физики, и тысячи генов, в которых закодированы правила, необходимые для построения мозга человека, — это, по меркам природы, «небольшое» число переменных. Можно представить себе, как естественному отбору удалось создать столь невероятно сложную структуру, определенную таким сравнительно небольшим числом переменных, даже если математиков или физиков перспектива работы с таким огромным их количеством привела бы в ужас.

По-видимому, для возникновения человеческого мозга со всеми его высшими когнитивными функциями была необходима возможность действия хаоса. Это не значит, что законы хаоса должны были быть закодированы в нашей ДНК — точно так же, как животному для поддержания равновесия не требуется, чтобы в его мозге была закодирована гравитационная постоянная. Но законы физики — часть природной окружающей среды, и организмы развиваются с учетом ограничений, которые налагают эти законы, и возможностей, которые они предоставляют.

Может быть, человек — единственное животное, мозг которого способен применять законы хаоса в когнитивных процессах. Электроэнцефалограммы показывают, что люди мыслят непрерывно, даже во сне. Насколько нам известно, никакое другое животное этого не делает. Даже у наших родственников, человекообразных обезьян, есть периоды нулевой активности даже в бодрствующем состоянии, и в такие периоды для активизации их высших мозговых функций требуется внешний стимул. Непрерывная мозговая деятельность человеческого мозга обеспечивает возможность долговременного хаотического поведения, которое, по-видимому, и является определяющей составляющей человеческого мышления.

Наука хаоса

Одним из основных побудительных мотивов развития математики было стремление найти более удобные способы вычислений, и за последние десять тысяч лет поиски таких способов приводили к появлению все более замысловатых вычислительных средств и алгоритмов. Но даже умнейшие из математиков могут оказаться бессильны перед лицом человеческой иррациональности. Например, Ньютон писал в 1720 году, когда потерял 20 000 фунтов (огромное состояние по тем временам) на фондовой бирже: «Я могу исчислить движение небесных тел, но не безумие человека» [81] Цит. в Dunbar (2000), р. 1. .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ласло Мерё читать все книги автора по порядку

Ласло Мерё - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика чудес. Осмысление событий редких, очень редких и редких до невозможности отзывы


Отзывы читателей о книге Логика чудес. Осмысление событий редких, очень редких и редких до невозможности, автор: Ласло Мерё. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x