Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр

Тут можно читать онлайн Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Дилемма заключенного и доминантные стратегии. Теория игр
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2014
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр краткое содержание

Дилемма заключенного и доминантные стратегии. Теория игр - описание и краткое содержание, автор Хорди Деулофеу, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий?
Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.

Дилемма заключенного и доминантные стратегии. Теория игр - читать онлайн бесплатно полную версию (весь текст целиком)

Дилемма заключенного и доминантные стратегии. Теория игр - читать книгу онлайн бесплатно, автор Хорди Деулофеу
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Головоломка, игра и математическая задача весьма схожи: они представляют собой вызов интеллекту. Принимая этот вызов, игрок (или тот, кто решает задачу) должен приложить определенные умственные усилия, чтобы справиться с задачей или обыграть соперника. Подобные усилия кому-то могут показаться обременительными и скучными, но они приносят подлинное удовольствие тем, кому по душе математика, загадки для ума или игры, в которых нужно подумать. Ведь, как говорил Мигель де Гусман, математика — это всегда игра, а также многое-многое другое.

Многие традиционные игры можно проанализировать с точки зрения теории игр - фото 2

Многие традиционные игры можно проанализировать с точки зрения теории игр.

Аналогично процесс обдумывания ходов в настольных играх очень похож на решение математических задач, так как математика сама по себе может быть занимательной и стимулировать интеллект. Тот факт, что математика имеет большое значение как самостоятельный вид умственной деятельности и используется в самых разнообразных областях, иногда простых, иногда сложных (как, например, некоторые популярные игры), не означает, что она очень трудна или скучна. Конечно, некоторые темы из курса математики заставляют школьников думать, что это и в самом деле так, но бессмысленная зубрежка имеет мало общего с математикой. Любой, кому удалось проникнуть в мир математики, знает, что она крайне занимательна и очень интересна.

Краткий экскурс в историю игр и математики с древнейших времен и до наших дней показывает, что развлечениям для ума находилось место в любую эпоху, начиная от Древнего Египта и заканчивая XXI веком. Хотя часто слово «игра» относится к любой индивидуальной или командной деятельности, далее мы будем различать игры и математические головоломки. В то время как головоломки чаще всего решаются в одиночку, игра подразумевает участие минимум двух человек, каждый из которых прежде всего стремится обыграть соперников. Конечная цель анализа игры — определить стратегию выигрыша, если мы говорим о конечных играх, в которых нет места случайности. В случае с азартными играми целью становится определение стратегии, повышающей шансы на победу.

Игры и математика до XVII века

С древнейших времен история математики полна упоминаний об играх и занимательных задачах. В действительности с момента появления игр (параллельно этому началось развитие математики) и до XVII века серьезную и занимательную математику нельзя отделить друг от друга, так как во многом они тесно переплетались. В 1612 году во Франции была издана первая книга, посвященная исключительно занимательной математике, — Problemes plaisants et delectables qui se font par les nombres («Приятные и восхитительные проблемы, которые создают числа») Клода Гаспара Баше де Мезириака. С этого момента два течения в математике постепенно начали расходиться, хотя в дальнейшем им не раз доводилось пересекаться. К примеру, это произошло, когда Ферма и Паскаль разработали основы теории вероятностей. Великие Ньютон, Эйлер и Гаусс проявляли живой интерес к занимательным задачам; игры также фигурируют в работах Эдуарда Люка о числах. И лишь в середине XX века эти направления окончательно объединила теория игр.

Игры и математика в Античности

Уже в двух великих цивилизациях древности, вавилонской и египетской, где математика носила исключительно практический характер, встречаются настольные игры и занимательные задачи. Первые упоминания о настольных играх, дошедшие до наших дней, относятся к египетской игре сенет и к настольной игре урских царей Вавилонии. С другой стороны, в одной из древнейших рукописей о математике — папирусе Ахмеса, который датируется примерно 1650 годом до н. э., наряду с практическими задачами о делении или вычислении среднего встречаются математические задачи без контекста, которые можно назвать занимательными. Этот древнеегипетский задачник, найденный в гробнице Рамзеса II примерно в 1850 году и приобретенный Александром Генри Риндом в 1856 году в Луксоре, в настоящее время хранится в Британском музее в Лондоне.

Супруга Рамзеса II царица Нефертари за игрой в сенет Этот рисунок находится на - фото 3

Супруга Рамзеса II царица Нефертари за игрой в сенет. Этот рисунок находится на стене передней залы ее гробницы.

Например, задача 24 папируса Ахмеса гласит: «Целое и седьмая его часть дают 19», что на современном языке выглядит так: «Найдите такое число, которое при сложении с одной седьмой его частью дает 19». Эта задача решается элементарно с помощью уравнения первой степени, но подобный прием, очевидно, был неизвестен древним египтянам. В папирусе Ахмеса приводится интересный способ ее решения, называемый методом ложного положения, который использовался древними во многих арифметических задачах. В этой задаче он применяется следующим образом. Ахмес предполагает, что решением является 7, и выполняет следующие действия: 7+ 7·1/7 = 8. Результат не равен 19, следовательно, нужно найти число, которое при умножении на 8 дает 19. Иными словами, нужно поделить 19 на 8. Эту операцию древние египтяне выполняли так:

(8 ×) 2 = 16,

(8 ×) 1/4 = 2,

(8 ×) 1/8 = 1.

Откуда следует: 19 : 8 = 2 + 1/4 + 1/8.

Следовательно, 7 нужно умножить на (2 + 1/4 + 1/8). Имеем: 14 + (1 + 1/2 + 1/4) + (1/2 + 1/4 + 1/8) = 16 + 1/2 + 1/8, что в современной записи выглядит как 16 + 5/8, или 16,625.

ТЫСЯЧЕЛЕТНЯЯ ИГРА СЕНЕГ

Одна из древнейших известных нам настольных игр называется сенет. В древнеегипетских гробницах найдены многочисленные рисунки и мозаики, где изображены игроки в сенет. Несмотря на это, ее точные правила неизвестны, хотя в 1978 году Тимоти Кендалл воссоздал игру на основе имеющихся источников. Он отмечает, что сенет играл важную роль в похоронных обрядах: усопший должен был сыграть партию с судьбой в присутствии бога Осириса. В «Книге мертвых» говорится, что от результата этой партии зависела дальнейшая загробная жизнь. Задача этой игры, рассчитанной на двух игроков, — первым довести до конца доски семь фишек. Вместо игральных костей используются четыре палочки, плоские с одной стороны и выпуклые с другой. Броском палочек можно получить одно из пяти возможных значений — по числу палочек, упавших плоской стороной вверх.

Доска для игры в сенет Изображено начальное положение игры Слева четыре - фото 4

Доска для игры в сенет Изображено начальное положение игры Слева четыре - фото 5

Доска для игры в сенет. Изображено начальное положение игры. Слева — четыре палочки, которые использовались вместо игральных костей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хорди Деулофеу читать все книги автора по порядку

Хорди Деулофеу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Дилемма заключенного и доминантные стратегии. Теория игр отзывы


Отзывы читателей о книге Дилемма заключенного и доминантные стратегии. Теория игр, автор: Хорди Деулофеу. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x