Карл Левитин - Геометрическая рапсодия
- Название:Геометрическая рапсодия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1984
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Левитин - Геометрическая рапсодия краткое содержание
Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии.
Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию.
Научно-художественная книга для широкого круга читателей.
Геометрическая рапсодия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
15
Истина эта, как стало ясно в последнее время, связана с так называемым экстремальным свойством правильных многогранников. То есть с их способностью ограничивать собою объем больший, чем любое другое тело с тем же числом граней. Или же, что то же самое, иметь наименьшую поверхность среди всех тел с тем же объемом и числом сторон. Правильные многогранники в некотором смысле самые "выгодные" фигуры. Природа пользуется этим фактом шире, чем нам думалось.
"На разных этапах развития математики вплоть до настоящего времени геометры возвращались к теории выпуклых многогранников и открывали в ней новые фундаментальные факты", — писал Лазарь Аронович Люстерник, член-корреспондент нашей Академии наук. Один из таких глубоких фактов и есть экстремальное свойство правильных многогранников. Проблема эта уходит корнями в седую древность.
...Финикийская царица Дидона отличалась невероятной прозорливостью — она предугадывала, что Марку Катону Старшему надо будет чем-то заканчивать каждую из своих речей в сенате, и ради этого решила основать Карфаген. Кроме того, Дидона была еще жадной и тщеславной, поэтому ей хотелось, чтобы новый город занимал как можно больше места на земле. Но она же вдобавок обладала хитростью и поразительной геометрической интуицией, и только благодаря этому удался ее честолюбивый замысел. В обмен на ничтожные безделушки Дидона выторговала у вождей племен, населявших север Африки, право владеть "клочком земли, который покроет воловья шкура". Коварная финикийская царица и не думала класть шкуру на землю — нет, она разрезала ее на тонкие ремни, связала их вместе и этой длинной веревкой вознамерилась огородить свое будущее владение. И тут перед ней — впервые за всю человеческую историю — встала задача, которую много веков спустя назовут изопериметрической: какую форму должна иметь замкнутая линия, чтобы площадь, заключенная внутри нее, получилась наибольшей?
Догадалась ли Дидона, что искомая фигура — круг? Кто знает... Известно лишь, что легендарная царица и на этот раз сумела урвать лишний кусок — она выбрала свой участок на берегу моря, так что вся морская граница досталась ей даром. За этой женщиной придется признать крупный геометрический талант: ведь изопериметрическая задача строго была решена лишь в прошлом веке швейцарским геометром Якобом Штейнером, а ее "карфагенский вариант" — с учетом того, что часть замкнутой кривой представляет собой прямую линию "побережья", — и того позже.
Штейнер доказал — притом сразу пятью разными способами, — что именно круг охватывает самую большую площадь при данной длине замкнутой линии. Вслед за этим удалось выяснить, что следующее слово за правильными многоугольниками: они "выгоднее" любой другой фигуры с тем же числом сторон. Так была окончательно решена задача, которой, кроме легендарной Дидоны, занимались реальные ученые — например, Зенодор и Архимед. Но тут же возникла новая: а какое пространственное тело может ограничить наибольший объем при той же поверхности? Или же какую форму должна иметь наименьшая поверхность, заключающая в себе данный объем? Ответ на оба вопроса почти очевиден: шар. Но что дальше? Кто следующий претендент на решение изопиранной (так она называется) задачи?
Да, правильные многогранники. Они обладают — среди всех прочих фигур с тем же числом граней — экстремальными свойствами. Это предположение тоже принадлежит Штейнеру.
Но правильные многогранники разные: тетраэдр, октаэдр и икосаэдр составлены из треугольных граней, куб ограничен квадратами, додекаэдр — пятиугольниками. У тетраэдра — всего четыре грани, у куба — шесть, октаэдра — восемь, додекаэдра — двенадцать, а у икосаэдра — все двадцать.
Значит, среди самих Платоновых тел существует конкуренция? Да, и фаворит в ней "многосторонний" икосаэдр. Вот его-то исключительностью среди всех пяти героев нашего рассказа и воспользовались вирусы.
"Живые источники математического творчества неотделимы от интереса к познанию природы и задачам управления природными явлениями", — утверждает академик Андрей Николаевич Колмогоров. "Числа не управляют миром, но показывают, как управляется мир" — так переработал пифагорианскую мудрость, избавив ее от идеалистического звучания, Иоган Вольфганг Гёте. Мысль о том, что в первооснове вещей лежат некие простые математические соотношения, крепко пустила корни на нашей планете и часто являлась в гениальные головы, перелетая через тысячелетия и континенты.
Кристаллы в виде кубов, тетраэдров и октаэдров, вирусы, ныне обретшие икосаэдрическую форму, — все это, очевидно, далеко не последние шаги наглядных математических представлений в глубины нашего мира.
Впрочем, почему только "в глубины"? Почему речь все время идет лишь о свойствах вещества? Зачем забывать о додекаэдре — платоновском символе Вселенной, "пятой сущности" алхимиков? [4] "В запасе осталось еще пятое многогранное построение, — пишет Платон в "Тимее", — его бог определил для Вселенной и прибегнул к нему, когда разрисовывал и украшал ее".
Если справедлив платоновский принцип: "геометрия приближает разум к истине", то он верен не только в микро-, но и в макрокосмосе. Числа все-таки должны править миром — описывать законы движения Вселенной.
"Геометрия древних греков стала краеугольным камнем новой астрономии" — это известное изречение больше всего относится к астрогеометрическим экспериментам Иоганна Кеплера. Открыв основные законы движения планет нашей Солнечной системы, он задался следующим вопросом: а почему они находятся на том или ином расстоянии от Солнца? И тут сказалась приверженность Кеплера к "чистой геометрии". "Если бы небесные движения были произведениями разума, можно было бы с основанием заключить, что орбиты планет — совершенные круги... сам Господь, который был слишком благ, чтобы оставаться праздным, затеял игру в символы, посылая знаки своего подобия в мир. Поэтому и я осмеливаюсь думать, что вся природа и благословенное небо записаны на языке искусства геометрии". Ясно, что человек с такой идеологией должен видеть торжество геометрии во всем, в том числе и во Вселенной. Кеплер пытался найти смысл в расположении планетных орбит, вписывая правильные многоугольники в окружности, а сферы — в кубы, последовательно, одну за другой, все уменьшая их размер. Но никакой аналогии с распределением планет на небесах не возникало.
И вдруг Кеплера осенило. Планет всего шесть и, следовательно, промежутков между ними — пять. Но и Платоновых тел тоже пять — не больше и не меньше. Не может быть, чтобы это совпадение оказалось случайным! И Кеплер стал лихорадочно вставлять один правильный многогранник в другой, по-разному комбинируя их и вписывая в каждый сферу, — математический прообраз планетных орбит. К его радости, эти построения, легшие в основу его книги "Тайна Вселенной" (в других переводах — "Космографическая тайна" и "Тайна мироздания"), обнаружили определенное сходство с небесным порядком, каким он виделся астрономам в те годы. "Несравненное удовольствие, которое я испытал от этого открытия, невозможно выразить словами", — писал он. В книге Иоганна Кеплера есть чертеж (15), из которого видно, каким он представлял себе механизм, ведающий размещением планет. Вокруг Солнца описан самый большой шар, по нему движется Сатурн. Теперь в него надо вписать куб, а в куб этот — снова шар, который определит собой орбиту Юпитера. Если в этот меньший шар вписать тетраэдр, а в него опять шар, то получится орбита Марса. Так, следуя Кеплеру, и надо продолжать вписывать в шары правильные многогранники, а в них — снова шары. Между Марсом и Землей окажется додекаэдр, между Землей и Венерой — икосаэдр, а Венеру и Меркурий разделит октаэдр. Точные значения орбит у Кеплера не получались, но он считал, что есть разница между "мыслимой идеей круга и действительным путем планеты", поскольку "небесные движения — произведения не разума, а природы". Поэтому ему пришлось подправлять свою модель — шары на его чертеже имеют различную толщину. Но все это было бы ничего, если бы не открыли новые планеты, а запас Платоновых тел, разумеется, не пополнился: их как было, так и осталось пять.
Читать дальшеИнтервал:
Закладка: