Маркос Санчес - Тайна за тремя стенами. Пифагор. Теорема Пифагора
- Название:Тайна за тремя стенами. Пифагор. Теорема Пифагора
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркос Санчес - Тайна за тремя стенами. Пифагор. Теорема Пифагора краткое содержание
Тайна за тремя стенами. Пифагор. Теорема Пифагора - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Натуральные числа, записанные клинописью.
В Месопотамии использовалась шестидесятеричная система.
Позиционная система счисления — это метод числовой записи, когда значение каждой цифры зависит от позиции, которую она занимает в последовательности. Система позволяет снизить количество цифр, необходимое для записи конкретного числа. Она определяется основанием, то есть количеством цифр, с помощью которых можно записать любое число. Существует огромное множество позиционных систем, и если их основание больше 10, то необходимо вводить дополнительные символы, кроме привычных нам 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Наиболее распространены сегодня система с основанием 10 (десятеричная система), принятая повсеместно, системы с основаниями 2 (двоичная), 8 (восьмеричная) и 16 (шестнадцатеричная), которые используются в информатике.
Культуры Междуречья достигли таких знаний в арифметике и алгебре, которые позволяли решать сложные уравнения, но в целом их математика оставалась на достаточно элементарном уровне. Они решали математическим путем конкретные практические задачи, однако демонстрировали определенную способность к абстрактной математике, знали, что определенные методы пригодны для решения определенных классов уравнений. Можно задаться вопросом: было ли в Месопотамии известно понятие математического доказательства? По всей видимости, несмотря на то что математики Междуречья умели решать сложные уравнения с помощью правильных систематизированных процедур, они ограничивались тем, что описывали конкретные шаги, которые надо сделать для их решения, и не приводили доказательств их правильности. Таким образом, в рамках месопотамской математики невозможно найти ни концепции доказательства, ни логической структуры, основанной на принципах, заслуживших всеобщее признание, ни каких-либо методологических выкладок.
В Междуречье господствующие культуры часто сменяли одна другую, теряя свое влияние, в то время как египетская цивилизация оставалась неизменной тысячелетиями. Своего расцвета египетская культура достигла в эпоху Третьей династии, примерно к 2500 году до н.э., когда фараоны принялись за постройку великих пирамид. Учитывая, что папирус при старении и высыхании становится исключительно ломким, сохранились немногие документы Древнего Египта и иероглифические надписи на камне. Наиболее важные математические тексты, дошедшие до нашего времени, содержатся в двух больших папирусах: Московском папирусе и папирусе Ринда, которые мы уже упоминали. Оба восходят приблизительно к 1700 году до н.э., хотя они содержат гораздо более древние математические задачи. Первые слова папируса Ринда составляют заголовок и свидетельствуют о престижности данной дисциплины, с точки зрения автора папируса: «Точный счет: путь к знанию всех существующих вещей и всех самых удивительных и таинственных секретов». Эти документы касаются типичных математических задач и их решений, так что, по всей видимости, написаны они были в педагогических целях. Видимо, египтяне не делали никаких различий между арифметикой и геометрией, потому что в папирусах перемешаны задачи обеих дисциплин.
Часто говорят, что египетская геометрия родилась по необходимости, поскольку после разливов Нила приходилось всякий раз заново размечать границы земельных участков, обрабатываемых разными земледельцами. Однако известно, что такая же геометрия развилась и в Месопотамии, хотя там не было подобных разливов. Вероятнее, что египтяне имели тесные контакты с вавилонской цивилизацией, так как в Тель эль-Амарне, в долине Нила, были обнаружены глиняные таблички с клинописными текстами, датированные примерно 1500 годом до н.э.
Судя по задачам, изложенным в этих папирусах, египтяне использовали математику в государственном управлении и в храмовых хозяйствах при расчете жалования, объемов зерна, площади полей, уплате налогов, зависящих от размера земельных участков, при переводе различных систем измерения, подсчете количества кирпичей, необходимых для строительства. Кроме того, папирусы содержат задачи, касающиеся количества зерна, которое нужно для производства определенного объема пива, или количества зерна определенного качества, которое необходимо, чтобы получить тот же результат, что и с другим сортом зерна.
При изучении всех этих задач становится понятным, что египтяне располагали способами расчета площади прямоугольников, треугольников и трапеций. К сожалению, в случае с площадью треугольника, хотя они и умножали одно число на половину другого, невозможно узнать, насколько этот метод был правильным, потому что непонятно, означают использованные слова основание и высоту треугольника или же просто его стороны.
Рассматривать иллюстрации в папирусе Ринда действительно увлекательно, так как здесь можно найти знакомые вещи, которые как будто уничтожают расстояние в тысячи лет, отделяющие писца Ахмеса от нас. Первый из нарисованных треугольников относится к 51-й задаче папируса.
В этой задаче надо найти площадь треугольника с высотой 10 шестов и основанием 4 шеста. Шест равнялся 100 локтям (египетский локоть состоял из 7 ладоней и равнялся 52, 3 см). Таким образом, размеры треугольника составляли 523 м в высоту и 209, 2 м по основанию. Из решения Ахмеса становится понятно, что имелся в виду равнобедренный треугольник, разделенный надвое высотой, а далее, опираясь на это, можно построить прямоугольник с такой же площадью.

Папирус Ринда — самая древняя книга с математическими текстами, дошедшая практически неповрежденной до нашего времени. Рисунок иллюстрирует задачу 51, где требуется найти площадь треугольника.

Фрагмент глиняной таблички ВМ 85194, на котором можно увидеть иллюстрацию расчета размера основания гробницы с круглыми стенами.

Рельеф на южной стене мастабы Птаххотепа и Ахухотепа, египетских сановников XXIV века до н. э. Перед изображенной фигурой, под столом, написаны египетскими цифрами количества различных продуктов, необходимых для жизни в потустороннем мире.
Читать дальшеИнтервал:
Закладка: