Маркос Санчес - Тайна за тремя стенами. Пифагор. Теорема Пифагора
- Название:Тайна за тремя стенами. Пифагор. Теорема Пифагора
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркос Санчес - Тайна за тремя стенами. Пифагор. Теорема Пифагора краткое содержание
Тайна за тремя стенами. Пифагор. Теорема Пифагора - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Среди 300 вавилонских табличек математического содержания из полумиллиона найденных до сегодняшнего дня особый интерес представляет табличка, называемая Плимптон 322 (табличка № 332 из коллекции издателя Джорджа Артура Плимптона, которую он в 1932 году передал Колумбийскому университету). Эта табличка относится к древнему периоду династии Хаммурапи (который охватывает эпоху между 1800 и 1600 годами до н.э.) и на ней изображена таблица с четырьмя колонками символов, которые, по-видимому, представляют числа, записанные в вавилонской шестидесятеричной системе.
Эти ряды чисел можно принять за записи торговых счетов, но при их внимательном изучении было сделано выдающееся открытие: это список пифагоровых троек по формуле а 2+ b 2= с 2. Таким образом, табличка Плимптона доказывает, что вавилоняне знали элементарную геометрию и начала алгебры.
Как вавилоняне нашли эти пифагоровы тройки? Почему они их интересовали? Для составления этой таблицы они, возможно, использовали известный им алгоритм, который оставался в забвении следующие 1500 лет, до Евклида с его «Началами».
I. | II.b | III.d | IV. | l |
(1) 59 00 15 | 159 | 2 49 | 1 | 2 00 |
(1) 56 56 58 14 50 06 15 | 56 07 | 3121 [1 20 25] | 2 | 57 36 |
(1) 55 07 4115 33 45 | 116 41 | 150 49 | 3 | 120 00 |
(1) 53 10 29 32 52 16 | 3 3149 | 5 09 01 | 4 | 3 45 00 |
(1)48 54 0140 | 105 | 137 | 5 | 112 |
(1) 47 06 4140 | 519 | 8 01 | 6 | 600 |
(1) 43 11 56 28 26 40 | 38 11 | 59 01 | 7 | 45 00 |
(1) 41 33 59 03 45 | 1319 | 20 49 | 8 | 16 00 |
(1) 38 33 36 36 | 901 [801] | 12 49 | 9 | 10 |
(1) 35 10 02 28 27 24 26 40 | 122 41 | 216 01 | 10 | 148 00 |
(1) 33 45 | 45 | 115 | 11 | 100 |
(1) 29 21 54 02 15 | 27 59 | 48 49 | 12 | 40 00 |
(1) 27 00 03 45 | 7121 [2 41] | 4 49 | 13 | 4 00 |
(1) 25 48 5135 06 40 | 29 31 | 53 49 | 14 | 45 00 |
(1) 23 13 46 40 | 56 | 53 [146] | 15 | 130 |
На следующей странице в таблице показаны 15 из 38 пифагоровых троек из этой таблички. Хотя клинописные символы заменены на привычные цифры, для понимания таблицы нужно сделать несколько уточнений. Четвертая колонка содержит номер строки. Вторая и третья колонки показывают значение гипотенузы и катета прямоугольного треугольника, записанные в шестидесятеричной системе. В последней колонке, обозначенной буквой «l», находятся значения второго катета. Содержимое первой колонки вызывает некоторое удивление, потому что там представлен квадрат соотношения d, деленного на l. Это значение можно было бы охарактеризовать как квадрат некоей тригонометрической функции. Рассмотрим первую строку вавилонской таблички, использовав десятеричную систему. В колонке II обозначена длина катета b=119 (что в шестидесятеричной системе записывается как 159 — одна «шестидесятая» плюс 59. — Примеч. перев.), а в колонке III — гипотенуза d =169 (записано как 249 — две «шестидесятой» плюс 49). Из этих величин вытекает длина другого катета, l = = 120 (200 — две «шестидесятки»). В таблице ниже эти значения переведены в десятеричную систему, по ней легче проверить соответствующие соотношения.
Номер строки | l | b | d |
1 | 120 | 119 | 169 |
2 | 3456 | 3367 | 4825 |
3 | 4800 | 4601 | 6649 |
4 | 13500 | 12709 | 18541 |
5 | 72 | 65 | 97 |
6 | 360 | 319 | 481 |
7 | 2700 | 2291 | 3541 |
8 | 960 | 799 | 1249 |
9 | 600 | 481 | 769 |
10 | 6480 | 4961 | 8161 |
11 | 60 | 45 | 75 |
12 | 2400 | 1679 | 2929 |
13 | 240 | 161 | 289 |
14 | 2700 | 1771 | 3229 |
15 | 90 | 56 | 106 |
В Египте математика была менее развита, чем в Междуречье. Сведения о ней происходят из пяти папирусов, посвященных математическим вопросам, среди которых самые важные — это папирус Ринда, обнаруженный в 1858 году шотландским египтологом Александром Генри Риндом (1833-1863) и ныне хранящийся в Британском музее, и Московский папирус, находящийся в коллекции Пушкинского музея в Москве. Два этих документа восходят, по всей видимости, к XVIII веку до н.э., хотя, возможно, они еще более древние. Оба папируса представляют исключительную ценность для историков математики, и весьма показательно, что ни в одном из них нет никаких свидетельств о теореме, известной сегодня как теорема Пифагора, или о пифагоровых тройках.
Во всяком случае, египтяне знали о том, что треугольники с соотношением сторон 3, 4, 5, а также пропорциональные им, прямоугольные и широко пользовались этим соотношением, когда надо было начертить две перпендикулярные линии, так что треугольник 3:4:5 даже получил название египетского.
О его применении, среди прочих, рассказывает Геродот в своем описании работы землемеров после сдвигов почвы, вызванных разливами Нила. Засвидетельствовано использование египетского треугольника и в строительстве, к примеру, при возведении огромной пирамиды Хефрена, восходящей к XXVI веку до н.э.
Ясное указание на пифагорово соотношение появляется в различных египетских расчетах, однако до нас не дошло никаких свидетельств, что это соотношение было сформулировано в общей форме. К примеру, в одном из документов XII династии (ок. 2000 до н.э.), найденном в Кахуне, используется выражение
l 2= (3/4) 2= (1+1/4) 2,
пропорциональное египетскому треугольнику. В Берлинском папирусе тоже содержится ряд медицинских, литературных и математических документов Среднего Царства, содержащих следы пифагоровой теоремы. В одном из математических папирусов решается система уравнений с двумя неизвестными в связи со следующей задачей:
Площадь квадрата в 100 квадратных кубитов равна сумме двух меньших квадратов. Сторона одного из них составляет 1/2 + 1/4 стороны другого. Найди длины сторон этих квадратов.
Египетские землемеры были жрецами, и их деятельность по измерению земли имела почти мистическое значение и вызывала благоговение у крестьян. Способ, с помощью которого они творили свое «волшебство», — это не что иное, как тригонометрия. Первые культуры, которые заинтересовались геометрией, развивали тригонометрические знания для использования их в строительстве и землемерии. Раздел земель на треугольники (триангуляция) всегда был главным методом измерения поверхностей, и развитие топографии вплоть до наших дней доказало его эффективность. Каждый треугольник можно разбить на два прямоугольных треугольника, которые позволят определить высоту или расстояние до недостижимых объектов с помощью измерения некоторых сторон и некоторых треугольников. Внимательно рассмотрев эти фигуры и сопоставив их с определениями синуса, косинуса и тангенса (см. стр. 55), можно заметить их очень полезные свойства. К примеру, b = a tg В. То есть вычислив угол В, можно получить значение а и, с помощью тригонометрических таблиц, узнать длину b. Это позволяет реализовать любые технические измерения с помощью линейки и теодолита (инструмент для точного измерения углов на местности), которые точно определяют длины и углы.
Читать дальшеИнтервал:
Закладка: