Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам
- Название:Стратегии решения математических задач. Различные подходы к типовым задачам
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5172-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам краткое содержание
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.
Стратегии решения математических задач. Различные подходы к типовым задачам - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Образцовое решение
Прежде чем браться за решение задачи, полезно отступить на шаг назад и посмотреть, что требуется. Заметим, что в данной задаче требуется определить не значения x и y, а сумму обратных величин этих двух чисел. Иначе говоря, нам нужно найти Используя подход от обратного, мы можем задаться вопросом, к чему это ведет. Сложение этих двух дробей может дать ответ. Таким образом,
Фактически мы сразу получаем ответ, поскольку знаем, что сумма чисел равна 2, а их произведение — 5. Просто подставим эти значения в последнюю дробь и получим:
Задача решена.
Задача 3.2
В распоряжении Лорен 11-литровый и 5-литровый сосуды. Как ей отмерить точно 7 литров воды?
Обычный подход
Большинство людей начинают строить догадки и «переливать воду» туда-сюда в попытке найти правильный ответ. Это своего рода «неинтеллектуальный» метод проб и ошибок.
Образцовое решение
Вместе с тем задачу можно решить более рационально при использовании подхода от обратного. В конечном итоге нам нужно получить 7 литров воды в 11-литровом сосуде, оставив свободным пространство объемом 4 литра. Откуда взялись эти 4 литра? (См. рис. 3.1.)


Чтобы получить 4 литра, мы должны оставить 1 литр воды в 5-литровом сосуде. Но как получить 1 литр в таком сосуде? Наполните 11-литровый сосуд водой и дважды отлейте воду в 5-литровый сосуд. В 11-литровом сосуде останется ровно 1 литр воды. Вылейте этот 1 литр в 5-литровый сосуд (рис. 3.2).
Теперь наполните 11-литровый сосуд и отлейте из него 4 литра воды в 5-литровый сосуд до его заполнения. В 11-литровом сосуде останутся требуемые 7 литров воды (рис. 3.3).

Учтите, что задачи подобного типа не всегда имеют решение. Иначе говоря, если вы хотите составить новую задачу такого вида, следует знать, что решение существует только в тех случаях, когда разница величин, кратных емкостям двух сосудов, может быть равной заданному объему. В нашем случае 2 × 11 − 3 × 5 = 7.
Задача 3.3
По определению, палиндром — это число, которое одинаково читается слева направо и справа налево. Так, числа 66, 595, 2332, 7007 являются палиндромами. Учитель Джека дал классу задание найти сумму первых 15 натуральных чисел. Джек взял калькулятор и сложил все числа от 1 до 15. Результат, к его удивлению, оказался палиндромом. Вместе с тем Джек пропустил одно число. Какое число он забыл включить?
Обычный подход
Как правило пытаются составить все возможные комбинации слагаемых, исключая по одному числу каждый раз, до тех пор, пока сумма 14 чисел не даст палиндром. Такой грубый метод вполне работоспособен, особенно когда вы используете калькулятор. Вместе с тем он требует времени, если вы действительно исключаете по одному числу за раз.
Образцовое решение
Попробуем подойти к решению задачи иначе и сначала определим, какую сумму должны дать первые 15 натуральных чисел. Хотя можно воспользоваться известной формулой для вычисления суммы членов арифметической прогрессии, а именно намного интереснее пойти путем, который предложил Карл Фридрих Гаусс, когда ему было 10 лет. Вместо того, чтобы складывать числа последовательно: 1 + 2 + 3 + … + 14 + 15, он к первому числу прибавил последнее, затем ко второму — предпоследнее и т. д. В результате у него получилось семь раз по 16 и 8 в середине, что в сумме составило 7 × 16 + 8 = 120.
Поскольку Джек упустил одно слагаемое и получил палиндром, результатом должно быть число 111. Вы можете возразить, почему именно этот палиндром, а не 101, например? Чтобы получить 101, упустив одно число, вы должны забыть 19, а это число лежит за пределами нашего интервала 1–15. Таким образом, Джек забыл число 9.
Задача 3.4
Мама испекла печенье на полдник для Берты. В первый день Берта съела половину всего испеченного печенья. На второй день она съела половину от того, что осталось. На третий день — одну четверть остатка, а на четвертый — одну треть. На пятый день она довольствовалась половиной того, что осталось, а на шестой день доела одно последнее печенье. Какое количество печенья испекла мама Берты?
Обычный подход
Первая реакция — написать ряд выражений, представляющих количество печенья, съеденного каждый день. Допустим, x — это начальное количество печенья.

Мама Берты испекла 16 печений.
Образцовое решение
Более эффективным является использование нашего подхода от обратного. Начнем с конца задачи и пойдем в обратном порядке:
В день 6 Берта съела одно последнее печенье, значит было 1 печенье;
В день 5 она съела 1/2, значит было 2 печенья;
В день 4 она съела 1/3, значит было 3 печенья;
В день 3 она съела 1/4, значит было 4 печенья;
В день 2 она съела 1/2, значит было 8 печений;
В день 1 она съела 1/2, значит было 16 печений.
Таким образом, вначале у Берты было 16 печений. Обратите внимание на то, что при вычислениях от обратного необходимо изменять используемые операции на «обратные». Вместо деления пополам мы должны удваивать, вместо сложения — вычитать и т. д. Это довольно легкий процесс.
Задача 3.5
Задача, которая ставит в тупик многих любителей математики, выглядит так: Марии 24 года. Она в два раза старше, чем была Анна, когда ей было столько же, сколько Анне сейчас. Сколько лет Анне?
Обычный подход
Для решения этой задачи недостаточно просто составить уравнение, которое даст ответ. Требуется нечто большее. Можно начать с создания таблицы, показанной на рис. 3.4.

Мы имеем 24 = 2 a , следовательно a = 12. Кроме того, 24 − x = a + x = 12 + x , следовательно x = 6. Анне было 12, когда Марии было столько же (18), сколько Анне сейчас (18).
Читать дальшеИнтервал:
Закладка: