Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам

Тут можно читать онлайн Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Альпина Паблишер, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегии решения математических задач. Различные подходы к типовым задачам
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9614-5172-6
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам краткое содержание

Стратегии решения математических задач. Различные подходы к типовым задачам - описание и краткое содержание, автор Альфред Позаментье, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.

Стратегии решения математических задач. Различные подходы к типовым задачам - читать онлайн бесплатно ознакомительный отрывок

Стратегии решения математических задач. Различные подходы к типовым задачам - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Альфред Позаментье
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Образцовое решение

Подход от обратного может оказаться полезным для решения этой задачи. А раз так, то начнем со следующих рассуждений.

В представленной ситуации есть два временных периода:

1. Нынешнее время, когда Марии 24 года.

2. Прошлое время n лет назад.

Введем следующие обозначения:

M — возраст Марии (24), A — возраст Анны, n — разница между двумя временными периодами.

В первом временном периоде — Мария в два раза старше, чем была Анна:

2 ( A − n ) = M . (3.1)

Во втором временном периоде — когда Марии было столько же, сколько Анне сейчас:

M − n = A . (3.2)

Подставим уравнение 3.2 в уравнение 3.1:

Значение n 6 при подстановке в уравнение 32 дает M 6 A A 24 6 - фото 70

Значение n = 6 при подстановке в уравнение 3.2 дает:

M − 6 = AA = 24 − 6 = 18.

Таким образом, возраст Анны составляет 18 лет.

Задача 3.6

От какой точки в выпуклом четырехугольнике сумма расстояний до каждой из вершин будет минимальной?

Обычный подход

Большинство без особых раздумий пытаются методом проб и ошибок найти точку, для которой сумма расстояний до вершин будет наименьшей. Вполне возможно, что кто-то выберет точку на пересечении диагоналей. Это правильный ответ, однако такой подход оставляет вопросы.

Образцовое решение

Наша стратегия поиска ответа от обратного оказывается более рациональной в данном случае. Возьмем четырехугольник ABCD с диагоналями, пересекающимися в точке E , и с точкой P , которая, на наш взгляд, может быть искомой, имеющей минимальную сумму расстояний до вершин. Соединим точку P пунктирными линиями с вершинами, как показано на рис. 3.5.

Рассмотрение треугольника APC показывает что AP PC AC поскольку сумма - фото 71

Рассмотрение треугольника APC показывает, что AP + PC > AC , поскольку сумма любых двух сторон треугольника всегда больше третьей стороны. Аналогичным образом, BP + PD > BD . В результате суммирования мы получаем, что AP + PC + BP + PD > AC + BD . Таким образом, отталкиваясь от предположения, что P может быть искомой точкой, мы находим, что выбор любой другой точки даст такой же результат. Единственной точкой, удовлетворяющей условиям задачи, является точка E на пересечении диагоналей.

Задача 3.7

Допустим, квадратные корни из уравнения x 2 + 3x — 3 = 0 равны r и s . Чему равна сумма r 2 + s 2 ?

Обычный подход

Обычный подход заключается в решении уравнения для значений r и s . Используя формулу Стратегии решения математических задач Различные подходы к типовым задачам - изображение 72для определения корней квадратного уравнения вида ax 2+ bx + c = 0, мы получаем:

Теперь нам нужно найти квадраты этих корней и их сумму Образцовое решение - фото 73

Теперь нам нужно найти квадраты этих корней и их сумму:

Образцовое решение Чтобы получить более изящное решение нужно вспомнить - фото 74

Образцовое решение

Чтобы получить более изящное решение, нужно вспомнить зависимость из элементарной алгебры, в соответствии с которой сумма корней квадратного уравнения ax 2+ bx + c = 0 составляет картинка 75а произведение корней картинка 76Из приведенного в условиях задачи уравнения мы находим, что сумма корней r + s = –3, а произведение rs = –3. При подходе от обратного, т. е. при определении суммы квадратов корней вместо прямых вычислений, как мы делали выше, для определения корней нам нужно искать эту сумму, поскольку ( r + s ) 2= r 2+ s 2+ 2 rs . Перепишем это уравнение следующим образом r 2 + s 2 = (r + s) 2 — 2rs .

Таким образом, значение r 2 + s 2 = (–3) 2— 2 (–3) = 9 + 6 = 15.

Задача 3.8

Макс, Сэм и Джек играют в необычную карточную игру. В этой игре проигравший отдает другим игрокам столько денег, сколько у них есть. Макс проигрывает в первой партии и отдает Сэму и Джеку столько денег, сколько есть у каждого из них. Сэм проигрывает во второй партии и отдает Максу и Джеку столько денег, сколько есть у каждого из них. Джек проигрывает в третьей партии и отдает Максу и Сэму столько денег, сколько есть у каждого из них. На этом они решают закончить игру, и у каждого остается ровно $8,00. Сколько денег у каждого из игроков было перед началом игры?

Обычный подход

Задача предполагает составление ряда уравнений, представляющих каждую партию. Обозначим начальную сумму денег у каждого игрока следующим образом: Макс — x , Сэм — y , Джек — z .

В последней партии как мы знаем каждое из значений равно 8 Это дает - фото 77

В последней партии, как мы знаем, каждое из значений равно 8. Это дает следующие три уравнения с тремя неизвестными:

В результате решения системы из трех уравнений мы получаем x 13 y 7 z - фото 78

В результате решения системы из трех уравнений мы получаем:

x = 13, y = 7, z = 4.

Образцовое решение

Обратите внимание что в задаче дается конечная ситуация и спрашивается какой - фото 79

Обратите внимание, что в задаче дается конечная ситуация и спрашивается, какой была начальная ситуация. Это может указывать на эффективность подхода от обратного при решении. Также заметьте, что в соответствии с описанием ситуации в игре постоянно находится одно и то же количество денег (а именно $24). Подход от обратного дает изящное решение.

Макс начинает с $13, Сэм — с $7, а Джек — с $4. Ответ получился таким же, как и при обычном подходе, однако решение было более изящным.

Задача 3.9

Ал и Стив делят пятнистых саламандр для участия в выставке. Ал отбирает для своей экспозиции саламандр с двумя пятнами, а Стив — с семью пятнами. У Ала на пять саламандр больше, чем у Стива. Всего на их саламандрах 100 пятен. Сколько саламандр на двух экспозициях?

Обычный подход

Характер этой задачи создает сложности для использования алгебры. Обычно количество саламандр у Ала обозначают как x , а количество саламандр у Стива — как y . Это позволяет составить следующие уравнения:

x — y = 5;

2 x + 7 y = 100.

Для решения этих двух уравнений умножим первое из них на 2:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Альфред Позаментье читать все книги автора по порядку

Альфред Позаментье - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегии решения математических задач. Различные подходы к типовым задачам отзывы


Отзывы читателей о книге Стратегии решения математических задач. Различные подходы к типовым задачам, автор: Альфред Позаментье. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x