Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам

Тут можно читать онлайн Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Альпина Паблишер, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегии решения математических задач. Различные подходы к типовым задачам
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9614-5172-6
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам краткое содержание

Стратегии решения математических задач. Различные подходы к типовым задачам - описание и краткое содержание, автор Альфред Позаментье, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.

Стратегии решения математических задач. Различные подходы к типовым задачам - читать онлайн бесплатно ознакомительный отрывок

Стратегии решения математических задач. Различные подходы к типовым задачам - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Альфред Позаментье
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Участвовали в заплыве = 14;

Играли в баскетбол и ходили в поход = 8;

Участвовали в заплыве и играли в баскетбол = 3;

Играли в баскетбол = 13;

Участвовали в заплыве и ходили в поход = 5;

Ходили в поход = 16.

При сложении этих частей диаграммы Венна мы получаем 8 + 3 + 2 + 1 + 4 + 6 + 5 = 29. В лагере было 40 мальчиков, из которых 29 участвовали в спортивных мероприятиях, а 11 нет.

Задача 8.8

Сколько целых чисел, цифры которых расположены в порядке возрастания, находится между 4000 и 5000?

Обычный подход

К решению этой задачи можно подойти, сообразив, что первой цифрой должна быть 4, а значит, на втором месте может стоять цифра 5, 6 или 7. Цифры 8 и 9 для этого не подходят, поскольку вслед за ними в возрастающем порядке уже ничего не расположишь. В результате таких рассуждений должно получиться следующее: 4567, 4568, 4569, 4578, 4579, 4589, 4678, 4679, 4689 и 4789.

Образцовое решение

Чтобы подойти к решению более организованно, воспользуемся схемой, представленной на рис. 8.9, хотя задача по своему характеру не требует никаких рисунков.

Каждый путь, начинающийся от цифры 4, ведет к числу, которое находится в диапазоне между 4000 и 5000. Всего таких путей 10, и они дают следующие числа: 4567, 4568, 4569, 4578, 4579, 4589, 4678, 4679, 4689 и 4789. Таким образом, мы получаем искомые числа с помощью схемы, построения которой условия задачи не требуют.

Задача 89 У моего брата целая коллекция фигурок двуногих обезьян и - фото 225

Задача 8.9

У моего брата целая коллекция фигурок двуногих обезьян и четвероногих буйволов. Если в коллекции всего 100 фигурок и в сумме 260 ног, то сколько в ней фигурок каждого вида?

Обычный подход

Чаще всего составляют два уравнения и решают их. Обозначим число фигурок обезьян как a , а число фигурок буйволов как b . Тогда мы получаем следующие уравнения:

a + b = 100;

2 a + 4 b = 260.

Умножение первого уравнения на 2 дает:

2 a + 2 b = 200;

2 a + 4 b = 260.

Если вычесть первое уравнение из второго, то мы получим:

2 b = 60;

b = 30.

Таким образом, в коллекции 30 буйволов и 70 обезьян.

Образцовое решение

Воспользуемся визуальным представлением данных (нарисуем схему), чтобы решить задачу. Прежде всего, уменьшим числа в условиях задачи в 10 раз, чтобы ими было легче оперировать (но будем помнить о том, что полученный результат нужно умножить на 10 для восстановления исходного порядка чисел). Итак, теперь у нас всего 26 ног и 10 фигурок. Нарисуем 10 окружностей, которые будут представлять 10 фигурок. Независимо от того, что это за фигурка, обезьяна или буйвол, у нее должно быть не менее двух ног (рис. 8.10).

До нужной величины нам не хватает шести ног — их необходимо добавлять парами (рис. 8.11).

У нас получилось три четвероногих фигурки и семь двуногих. Осталось умножить их на 10. Таким образом, мы получаем 30 фигурок буйволов и 70 фигурок обезьян.

Глава 9 Учет всех возможностей Мы знаем что организация данных иногда очень - фото 226 Глава 9 Учет всех возможностей Мы знаем что организация данных иногда очень - фото 227

Глава 9

Учет всех возможностей

Мы знаем, что организация данных иногда очень облегчает поиск решения. Если нужно выявить, например, закономерность, то аккуратное представление данных в виде списка или таблицы может помочь в этом. Особенно интересны здесь исчерпывающие списки, т. е. списки, в которых систематизированно перечисляются все существующие возможности. В таких списках часто обнаруживается то, что мы ищем. Составление исчерпывающего списка позволяет тщательно проанализировать все возможности.

В качестве примера предположим, что у вас не работает лампа. Попробуем перечислить все возможности. (Конечно, это можно сделать мысленно, но в результате вы все равно получите список.) Проблема может крыться в перегоревшей лампочке, оборванном проводе, неработающей розетке, сработавшем предохранителе или неисправном выключателе. Проверяя возможности одну за другой, мы в конечном итоге дойдем до той, которая является причиной неисправности. Математический пример может выглядеть так:

Имеется двузначный квадрат целого числа. Если вставить одну цифру между существующими двумя, то получится трехзначный квадрат целого числа. Какие трехзначные квадраты чисел мы получаем?

Проанализируем все возможности. Прежде всего, составим исчерпывающий список двузначных квадратов целых чисел, их шесть:

16, 25, 36, 49, 64, 81.

Теперь составим исчерпывающий список трехзначных квадратов целых чисел:

100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961.

Выберем из второго списка те числа, которые можно составить, вставив какую-либо цифру между первой и второй цифрами двузначных квадратов целых чисел. Такому условию удовлетворяют только 196(вставлена 9 между цифрами числа 16), 225(вставлена 2 между цифрами числа 25) и 841(вставлена 4 между цифрами числа 81). Два исчерпывающих списка сделали очевидными все возможности. Обратите внимание на то, что исчерпывающий список не только содержит ответ задачи, но ограничивает количество исследуемых возможностей.

Вот еще один пример использования этой полезной стратегии.

На скамейке в парке сидят два человека. Один из них — женщина. Какова вероятность того, что и второй тоже окажется женщиной?

Составим список всех возможностей (М = мужчина, Ж = женщина):

М — М М — Ж Ж — М Ж — Ж.

В список пошли четыре возможности, однако в нашей задаче первую, М — М, не нужно учитывать, поскольку известно, что как минимум один человек — женщина. У нас остаются три варианта, и лишь в одном из них могут быть две женщины. Таким образом, ответом на поставленный вопрос будет вероятность, равная.

Чтобы еще лучше увидеть ценность такого подхода к решению задач, рассмотрим еще один пример:

В двух залах местного кинотеатра показывают по утрам разные мультфильмы. Утренние сеансы в обоих залах должны заканчиваться к 13:00, когда начинается демонстрация художественных фильмов. В зале A первый сеанс мультфильмов начинается в 9:00, второй в 9:28, а потом через каждые 28 минут. В зале B первый сеанс тоже начинается в 9:00, но потом сеансы повторяются через 35 минут. Джоанн хочет попасть на просмотр мультфильмов в обоих залах. Во сколько два последующих сеанса начинаются одновременно?

Составим исчерпывающий список времени начала сеансов в обоих залах.

Любой последующий сеанс должен был бы начаться уже после 1300 Мы перечислили - фото 228

Любой последующий сеанс должен был бы начаться уже после 13:00. Мы перечислили все возможности! Где-то в этом списке всех должен находиться ответ. Список показывает лишь одно время, когда начало сеансов в обоих залах совпадает — 11:20.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Альфред Позаментье читать все книги автора по порядку

Альфред Позаментье - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегии решения математических задач. Различные подходы к типовым задачам отзывы


Отзывы читателей о книге Стратегии решения математических задач. Различные подходы к типовым задачам, автор: Альфред Позаментье. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x