Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам
- Название:Стратегии решения математических задач. Различные подходы к типовым задачам
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5172-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Альфред Позаментье - Стратегии решения математических задач. Различные подходы к типовым задачам краткое содержание
В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике. Для каждой задачи авторы приводят сначала стандартное решение, а затем более элегантный и необычный метод. Так вы узнаете, насколько рассматриваемая стратегия облегчает поиск ответа.
Стратегии решения математических задач. Различные подходы к типовым задачам - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Такая стратегия очень эффективна, но вы должны убедиться в том, что перечислили все без исключения возможности! Только тщательная организация данных может дать вам полную уверенность. Как и в случае с другими стратегиями, необходимо обдуманно подходить к выбору той, которая подходит в данном случае. Стратегия учета всех возможностей может сделать решение более очевидным.
Задача 9.1
Учитель математики замечает, что его нынешний возраст представляет собой простое число. Он обнаруживает, что в следующий раз его возраст станет простым числом через столько же лет, сколько прошло с той поры, когда возраст был простым числом в прошлый раз. Сколько лет учителю математики?
Обычный подход
У этой задачи не так много альтернативных способов решения. Обычно начинают перебирать числа в надежде «наткнуться на подходящее».
Образцовое решение
Здесь наверняка нам пригодится стратегия учета всех возможностей. Рассмотрим следующий список:

В списке простых чисел от 1 до 100 (хотя в ситуации учителя математики можно было бы ограничиться числами в диапазоне от 20 до 80) только в двух случаях три последовательных простых числа имеют одинаковую разность. Первый случай — 3, 5 и 7 — нам не подходит, поскольку пятилетних учителей математики не бывает. Второй случай — 47, 53 и 59 — укладывается в подходящий возрастной диапазон. Таким образом, учителю математики должно быть 53 года.
Задача 9.2
Найдите количество сочетаний, при которых 20 монет достоинством 5 центов, 10 центов и 25 центов могут составить в сумме $3,10.
Обычный подход
Большинство людей сразу начинают составлять алгебраические уравнения, отражающие информацию из условий задачи. В результате они получают: n + d + q = 20, где n, d и q — количество 5-, 10- и 25-центовых монет соответственно. Это можно записать, как n = 20 — q — d . Кроме того, 25 q + 10 d + 5 n = 310, что при объединении с предыдущими двумя уравнениями дает: 25 q + 10 d + 5 (20 — q — d ) = 310. Отсюда 4 q + d = 42, или После этого остается лишь подставлять разные значения, чтобы выявить наилучший результат.
Образцовое решение
У нас, однако, есть более рациональный метод, а именно учет всех возможных значений d . Прежде всего, мы замечаем, что q должно быть целым числом, а значит необходимо выделить дробную часть q , т. е. или d = 2–4 k . Подставив это в приведенное выше уравнение, мы получаем q = 10 + k , а n = 20 — q — d = 20 — (10 + k ) — (2–4 k ), или n = 8 + 3 k .
Поскольку d = 2–4 k , значение k может быть либо нулевым, либо отрицательным.
В таблице ниже приведены возможные значения k и вытекающие из него значения d, q и n .

При k = 0, –1, –2 мы получаем реальные варианты. Когда же k = –3, d = 2–4(–3) = 14, а n = 8 + 3(–3) = –1, что не имеет смысла в этой задаче. Таким образом, количество сочетаний, при которых сумма составляет $3,10, равно трем.
Задача 9.3
Для доставки консервов из тунца компания может использовать небольшие коробки, в которые входит восемь банок, и коробки побольше, вмещающие 10 банок. С целью экономии компания старается чаще использовать большие коробки. Если заказ составляет 96 банок, то как лучше упаковать его для отправки?
Обычный подход
Эта задача имеет любопытное математическое решение. Если обозначить как x количество небольших коробок, а как y количество больших коробок, то мы получим уравнение:
8 x + 10 y = 96.
В этом уравнении, однако, две неизвестные, что обычно означает наличие множества решений. Такое уравнение, где значения x и y могут быть только целыми, называют диофантовым по имени древнегреческого математика Диофанта (примерно 208–292 гг. н. э.). Попробуем решить его. Выразим x через y :

Значение члена должно быть целым, чтобы получить целое значение x . Пусть y = 4. Тогда
а x = 12 − 4–1 = 7. Таким образом, мы получаем семь маленьких коробок и четыре больших. Могут ли существовать другие ответы? Попробуем поискать их. Аналогичным образом можно принять y = 0 и получить 12 и 0. Наконец при y = 8 мы получаем x = 2.
Образцовое решение
Для решения этой задачи лучше всего подходит стратегия учета всех возможностей и представление данных в табличной форме.

Похоже, мы сразу получили один правильный ответ! Он удовлетворяет численным условиям задачи — необходимо отправить 96 банок. Вместе с тем единственная ли это возможность? В конце концов, такой ответ означает, что компания не использует ни одной большой коробки. А из условий нам известно, что она стремится использовать максимальное количество больших коробок. Поэтому продолжим таблицу и попробуем найти все возможные варианты.

Существуют три варианта упаковки: 2 маленьких коробки и 8 больших; 7 маленьких коробок и 4 больших; 12 маленьких коробок и 0 больших. Вместе с тем, поскольку компания стремится использовать максимальное количество больших коробок, ответ для нашей задачи — 2 маленькие коробки и 8 больших. Обратите внимание на то, что с математической точки зрения все три ответа удовлетворяют условию, в соответствии с которым необходимо отправить 96 банок. Контекст задачи, однако, заставляет отбросить два варианта ответа из тех трех, что позволила выявить таблица.
Задача 9.4
На стандартном игральном кубике точки на противоположных гранях составляют в сумме 7. Сколько разных сумм дают точки на трех соседних гранях стандартного кубика?
Обычный подход
Одни обычно пытаются нарисовать кубик и последовательно подсчитать точки на соседних гранях. Другие начинают выписывать возможные сочетания точек на трех гранях, независимо от того, находятся они рядом или нет.
Читать дальшеИнтервал:
Закладка: