Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В качестве примера того, как вычисляется каждая пара выигрышей, рассмотрим узел, в котором «природа» создала актив типа С, консультант сообщил о типе Х, а вы выбрали И (на рис. 8.5этот узел обозначен символом i ). При таком раскладе ваш выигрыш составляет 80 % от прибыли 1 на ваши инвестиции, из которого исключаются авансовые комиссионные 2, выплаченные консультанту, что в итоге равно 0,8–2 = −1,2. Консультант получает комиссионные 2 и свою долю 20 % от прибыли на инвестиции в данный актив (0,2), но при этом несет репутационные издержки М, а значит, его общий выигрыш будет 2,2 — М. Мы предоставляем вам возможность самостоятельно убедиться в том, что все остальные выигрыши, отображенные на данном дереве игры, вычислены правильно.
С помощью дерева игры на рис. 8.5мы можем построить для нее таблицу выигрышей. Строго говоря, она должна включать в себя все стратегии, доступные вам и вашему консультанту. Однако, как и при построении дерева игры, мы можем исключить из рассмотрения некоторые стратегии, прежде чем вносить их в таблицу; в частности, удалим все явно плохие стратегии. Это позволит построить гораздо меньшую, а значит, и куда более удобную таблицу по сравнению с той, в которую были бы включены все возможные стратегии.
Какие стратегии мы можем исключить из рассмотрения в качестве равновесных? Ответ на этот вопрос включает два аспекта. Во-первых, мы можем игнорировать стратегии, которые однозначно не будут использованы. Во время построения дерева игры мы уже удалили некоторые из них для консультанта (например, стратегию «сообщать тип П, если истинный тип актива Х»). Теперь мы можем видеть, что у вас также есть несколько вариантов, подлежащих исключению. Например, стратегия «выбрать И, если консультант сообщает тип П» в концевом узле доминируема стратегией «выбрать Н, если консультант сообщает тип П», поэтому мы исключаем ее из рассмотрения. Точно так же в рамках информационного множества «сообщить тип С» ваша стратегия «выбрать И, если консультант сообщает тип С» доминируема стратегией «выбрать Н, если консультант сообщает тип С»; это худший выбор в обоих концевых узлах ( c и g ) и поэтому тоже может быть проигнорирован. Во-вторых, мы можем исключить все стратегии, не оказывающие никакого влияния на поиск равновесий дешевого разговора. Например, для консультанта обе стратегии «сообщить тип П» и «сообщить тип С» приводят к выбору вами стратегии Н, поэтому мы исключаем обе. Помимо концевых узлов, которые мы уже удалили на рис. 8.5( a, c и g ), мы можем удалить также узлы b, d и h .
После такой процедуры упрощения у нас остается всего шесть концевых узлов ( e, f, i, j, k и l ), соответствующих стратегиям, в случае которых консультант сообщает, что актив относится к типу Х, а вы в ответ выбираете стратегию согласно полученной информации. Если конкретно, в распоряжении консультанта осталось три интересные стратегии («всегда сообщать тип Х независимо от того, каков истинный тип актива — П, С или Х», «сообщать тип Х только в случае, если истинный тип актива С или Х» и «сообщать Х только в случае, если и только если истинный тип актива Х»), а в вашем — две («выбрать И, если консультант сообщает тип Х» и «выбрать Н, если консультант сообщает тип Х»). Эти пять стратегий позволяют построить таблицу выигрышей три на два, представленную на рис. 8.6.
Рис. 8.6.Таблица выигрышей игры с дешевым разговором
Выигрыши по каждой комбинации стратегий на рис. 8.6 — это ожидаемые выигрыши , вычисленные с помощью значений в концевых узлах дерева (которых можно достичь при данной комбинации стратегий), взвешенных по соответствующим вероятностям. В качестве примера рассмотрим верхнюю левую ячейку таблицы, в которой консультант сообщает о том, что актив относится к типу Х независимо от его истинного типа. Эта комбинация стратегий приводит к концевым узлам e, i и k , каждый с вероятностью 1/3. Следовательно, ожидаемый выигрыш консультанта в этой ячейке составляет {[1/3 × (2 — Б)] + [1/3 × (2,2 — М)] + (1/3 × 13)} = 1/3 × (17, 2 — Б — М). Точно так же ваш ожидаемый выигрыш в той же ячейке равен [(1/3 × –52) + (1/3 × –1,2) + (1/3 × 42)] = 1/3 × (–11,2). Мы снова предоставляем вам возможность самостоятельно убедиться в том, что оставшиеся ожидаемые выигрыши рассчитаны правильно.
Теперь, имея полную таблицу выигрышей, мы можем использовать представленные в главе 4методы для поиска равновесия с оговоркой, что значения М и Б в нашем анализе играют определенную роль. Простой анализ наилучших ответов показывает, что ваш наилучший ответ на стратегию консультанта «всегда Х» — «Н, если Х», а на две его другие стратегии — «И, если Х». Аналогичным образом, наилучшим ответом консультанта на вашу стратегию «Н, если Х» может быть любая из его трех стратегий. Таким образом, мы имеем первый результат: верхняя правая ячейка — это всегда равновесие Нэша. Если консультант сообщает, что актив относится к типу Х, каким бы ни был его истинный тип (или, если уж на то пошло, отправляет любое сообщение, но только одно и то же во всех трех сценариях), вам лучше выбрать Н, а если вы выбираете Н, у консультанта нет причин отклоняться от своего выбора. Это и есть равновесие пустого разговора при полном отсутствии обмена информацией, с которым мы уже сталкивались выше.
Далее рассмотрим наилучший ответ консультанта на ваш выбор стратегии «И, если Х». Единственно возможные равновесия возникают, когда он применяет стратегию «Х, только если С или Х» или «Х, если и только если Х». Однако какой именно из двух вариантов он выберет (или не выберет ни одного их них), зависит от конкретных значений Б и М. Для того чтобы пара стратегий {«Х, только если С или Х», «И, если Х»} была равновесием Нэша, должны выполняться следующие условия: 15,2 — М > 17,2 — Б — М и 15, 2 — М > 13. Первое выражение верно, если Б > 2, второе — если М < 2,2. Таким образом, если значения Б и М удовлетворяют этим условиям, средняя левая ячейка будет равновесием дешевого разговора (по Нэшу). В этом равновесии сообщение консультанта о типе актива Х не позволяет вам определить, каков истинный тип, С или Х, но вы точно знаете, что это не П. Располагая такой информацией, вы можете быть уверены, что ваш ожидаемый выигрыш будет положительным, и решаете инвестировать. В этой ситуации Х действительно означает «не-П», а равновесный исход формально эквивалентен равновесию с частичным раскрытием информации, о котором мы говорили выше [124].
Мы можем также проверить выполнение условий, при которых пара стратегий {«Х, если и только если Х», «И, если Х»} — это равновесие Нэша. Такой исход требует, чтобы 13 > 17,2 — Б — М и 13 > 15, 2 — М. Проанализировать эти выражения не так легко, как представленные выше. Однако следует отметить, что второе выражение требует, чтобы М > 2,2, а также что мы предположили, что Б > М; следовательно, условие Б > 2,2 должно выполняться при выполнении условия М > 2,2. Теперь можете использовать эти условия для проверки выполнения первого выражения. Возьмите минимальное значение Б и М, равное 2,2, и подставьте его в выражение 13 > 17,2 — Б — М, в результате получите 13 > 12,8, что, безусловно, верно. Эти расчеты указывают на то, что нижняя левая ячейка — это равновесие дешевого разговора, когда М > 2,2, при условии, что Б > М. Это и есть равновесие с полным раскрытием информации, которое мы нашли в конце предыдущего анализа.
Читать дальшеИнтервал:
Закладка: