Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В этой главе также рассматриваются некоторые более широкие вопросы, связанные с поведением в играх с одновременными ходами и концепцией равновесия Нэша. В частности, эмпирические данные о ведении игр в соответствии с равновесием Нэша, собранные в ходе как лабораторных экспериментов, так и наблюдений за реальными жизненными ситуациями. Кроме того, представлен ряд теоретических критических замечаний в отношении концепции равновесия Нэша, а также приведены аргументы против подобной критики. Еще вы увидите, что прогнозы, составленные на основе теории игр, во многих случаях целесообразно (с некоторыми оговорками) использовать в качестве отправной точки для понимания фактического поведения.

1. Чистые стратегии, представляющие собой непрерывные переменные

В главе 4мы сформулировали метод анализа наилучших ответов для поиска всех равновесий Нэша в чистых стратегиях в играх с одновременными ходами. Теперь расширим его на игры, в которых у каждого игрока — непрерывный диапазон вариантов выбора, например при установлении компанией цен на свою продукцию. Чтобы вычислить наилучшие ответы в игре такого типа, мы должны найти для каждого возможного значения цены одной компании значение цены другой компании, которое будет для нее лучшим (максимизирует ее прибыль). Непрерывность множества стратегий позволяет нам использовать алгебраические формулы для того, чтобы продемонстрировать, как стратегии обеспечивают выигрыши, а также показать наилучшие ответы в виде линий на графике, где на осях координат отображена цена (или любая другая непрерывная стратегия) каждого из игроков. При таком способе представления игры равновесие Нэша находится в месте пересечения линий на графике. Мы разовьем эту идею и метод на примере двух историй.

А. Ценовая конкуренция

Наша первая история происходит в маленьком городке под названием Яппи-Хейвен, в котором есть два ресторана: Xavier’s Tapas Bar и Yvonne’s Bistro. Чтобы упростить ситуацию, будем исходить из предположения, что в каждом ресторане используется стандартное меню. Владельцы Xavier’s и Yvonne’s должны установить цены на блюда в своих меню; при этом цель каждого из них, чтобы эти цены обеспечивали максимальную прибыль (выигрыш в этой игре). Мы также полагаем, что рестораны печатают меню порознь, не зная о ценах друг друга, стало быть, это игра с одновременными ходами [57]. Поскольку цены могут принимать любое значение в пределах (почти) бесконечного диапазона, начнем с введения общих или алгебраических обозначений, затем найдем правила наилучших ответови используем их для решения игры и определения равновесных цен. Обозначим цену ресторана Xavier’s как P x а Yvonne’s как P y .

При определении цены каждый ресторан должен просчитать последствия с точки зрения прибыли. Для того чтобы упростить задачу, мы ставим два ресторана в условия симметричной зависимости, но читатели с развитыми математическими навыками могут выполнить аналогичный анализ, воспользовавшись более общими величинами или даже алгебраическими символами. Допустим, обслуживание одного клиента обходится каждому ресторатору в 8 долларов. Предположим также, что опыт или исследования рынка показывают, что, если цена ресторана Xavier’s P x , а Yvonne’s P y , количество клиентов, Q x и Q y соответственно (в сотнях клиентов в месяц) задается уравнениями [58]

Q x = 44 — 2 P x + P y ,

Q y = 44 — 2 P y + P x .

Основная идея этих уравнений состоит в том, что, если один ресторан повысит цену на 1 доллар (скажем, Yvonne’s повысит P y на один доллар), его объем продаж сократится на 200 в месяц ( Q y уменьшится на 2), а объем продаж другого ресторана увеличится на 100 в месяц ( Q x увеличится на 1). Можно предположить, что 100 клиентов ресторана Yvonne’s перейдут к Xavier’s, а еще 100 останутся дома.

Обозначим прибыль ресторана Xavier’s за неделю (в сотнях долларов в неделю) символом π х (греческая буква π [ «пи»] — традиционный экономический символ для обозначения прибыли). Эта прибыль рассчитывается как произведение чистого дохода на одного клиента (цена за вычетом затрат на обслуживание, или Р х — 8) и количества обслуженных клиентов:

π x = ( P x — 8) Q x = ( P x — 8) (44 — 2 P x + P y ).

Умножив и перегруппировав члены в правой части предыдущего выражения, можем записать прибыль как функцию повышающихся степеней Р х :

π x = — 8(44 + P y ) + (16 + 44 + P y ) P x — 2( P x ) 2 = — 8(44 + P y ) + (60 + P y ) P x — 2( P x ) 2.

Xavier’s устанавливает цену Р х , чтобы максимально увеличить свой выигрыш. Делая это для каждого возможного уровня цены ресторана Yvonne’s P y , мы получим правило наилучших ответов ресторана Xavier’s, которое можно отобразить на графике.

В такой форме можно представить многие простые иллюстративные примеры, в которых одно действительное число (такое как цена) выбирается для максимального увеличения другого, зависимого от него действительного числа (например, прибыль или выигрыш). В приложении к этой главе описан простой общий метод выполнения операции максимизации; вы найдете немало случаев его применения. Здесь же мы просто приводим формулу.

Функция, которую мы хотим максимизировать, задается следующим общим уравнением:

Y = A + BX–CX 2 .

Мы использовали обозначение Y для величины, которую нужно максимизировать, и X для величины, которую хотим выбрать, чтобы максимизировать Y . В нашем конкретном примере прибыль π x будет представлена в виде Y , а цена P х в виде X . Точно так же, хотя в любой конкретной задаче члены приведенного выше уравнения А, В и С были бы известны, мы обозначили их общими алгебраическими символами, с тем чтобы наша формула была применима ко множеству аналогичных задач. (Формальный термин, которым обозначаются члены А, В и С , — параметры, или алгебраические константы .) Поскольку большинство случаев практического применения подразумевают наличие неотрицательных значений X , таких как цены, а также максимизацию значения Y , необходимо, чтобы выполнялось условие В > 0 и С > 0. Тогда формула, позволяющая выбрать X для максимизации Y с учетом известных значений А, В и С , будет выглядеть так: Х = В /2 С . Обратите внимание, что А в ней отсутствует, хотя это, безусловно, влияет на полученное в результате значение Y .

Сравнив общую функцию в уравнении выше и конкретный пример функции прибыли в игре в ценообразование на предыдущей странице, получим [59]

В = 60 + P y и С = 2.

Следовательно, цена, которую выберет ресторан Xavier’s для максимального увеличения прибыли, будет удовлетворять формуле В /2 С и составит

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x