Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

c) Опишите новую версию игры в стратегической форме.

d) Найдите все равновесия Нэша в этой игре. Сколько их? Как это соотносится с количеством равновесий, найденных в упражнении S10 в данной главе?

U9.Вернитесь к игре между Моникой и Нэнси из упражнения U10в главе 5. Допустим, они выбирают количество усилий последовательно, а не одновременно. Моника делает это первой, а Нэнси, узнав об этом решении, также выбирает количество усилий.

a) Найдите совершенное равновесие подыгры, при котором общая прибыль определяется по формуле 5 m + 4 n + mn , затраты Моники и Нэнси, связанные с вложением усилий, составляют mn 2соответственно и Моника принимает решение о количестве усилий первой.

b) Сравните выигрыши Моники и Нэнси с выигрышами, вычисленными в упражнении S10в главе 5. В этой игре есть преимущество первого или второго хода?

c) Воспользовавшись той же функцией общей прибыли, что и в пункте а, найдите совершенное равновесие подыгры для игры, в которой Нэнси первой принимает решение о количестве усилий.

U10.В расширенном варианте упражнения U9 Монике и Нэнси необходимо решить, кто из них выберет количество усилий в первую очередь. Для этого каждая пишет на листке бумаги, будет ли она принимать решение первой. Если обе напишут «да» или «нет», им предстоит выбирать количество усилий одновременно, как в упражнении U10в главе 5. Если Моника напишет «да», а Нэнси «нет», то они сыграют в игру, представленную в пункте а упражнения U9. Если Моника напишет «нет», а Нэнси «да», то они сыграют в игру из пункта c.

a) На основании выигрышей Моники и Нэнси, полученных в упражнении U9выше, а также в упражнении U10в главе 5, составьте таблицу для первого этапа игры в принятие решений.

b) Найдите равновесия Нэша в чистых стратегиях на первом этапе игры.

U11.В отдаленном городке Сент-Джеймс две компании, Bilge и Chem, конкурируют на рынке безалкогольных напитков (Coke и Pepsi пока на этом рынке нет). Bilge и Chem продают идентичную продукцию, а так как их продукт — жидкость, у них есть возможность выпускать его в более мелких емкостях. Поскольку на данном рынке представлены только эти две компании, цена товара P (в долларах) определяется по формуле P = (30 — Q B — Q C ), где Q B — количество продукции, выпускаемой Bilge, а Q C — количество продукции Chem (в обоих случаях оно измеряется в литрах). В настоящее время обе компании рассматривают возможность инвестиций в новое оборудование для разлива напитков в бутылки, которое позволит сократить переменные издержки.

a) Если компания j решит не инвестировать, ее затраты составят C j = Q 2 j / 2, где j обозначает либо B (Bilge), либо C (Chem).

b) Если компания j решит инвестировать, ее затраты составят C j = 20 + Q 2 j / 6, где j обозначает либо B (Bilge), либо C (Chem). Эта новая функция издержек отображает фиксированную стоимость оборудования (20), а также более низкие переменные издержки.

Две компании принимают решения об инвестициях одновременно, но выигрыш в этой игре в инвестиции будет зависеть от игр в дуополию, которые возникнут впоследствии. Следовательно, игра состоит из двух этапов: сначала принять решение об инвестициях, а затем играть в дуополию.

a) Предположим, обе компании решают инвестировать. Запишите функции их прибыли, выраженные через QQ C, и найдите с их помощью равновесия Нэша в игре с определением количества. Чему равны количество и прибыль обеих компаний при таком равновесии? Какова рыночная цена?

b) Допустим, обе компании решают не инвестировать. Чему равно количество продукции и прибыль обеих компаний при таком равновесии? Какова рыночная цена?

c) Теперь предположим, что компания Bilge решает инвестировать, а Chem — нет. Чему равно количество продукции и прибыль обеих компаний при таком равновесии? Какова рыночная цена?

d) Составьте таблицу два на два для игры в инвестиции между этими компаниями. В распоряжении каждой из них есть две стратегии: «инвестировать» и «не инвестировать». Выигрыши компаний — их прибыль, вычисленная в пунктах а, b и с. (Подсказка: обратите внимание на симметричность игры.)

e) Есть ли совершенное равновесие подыгры в этой двухэтапной игре в целом?

U12.Два французских аристократа, шевалье Шагрин и маркиз де Ренар, дерутся на дуэли. У каждого пистолет заряжен одной пулей. Находясь на расстоянии 10 шагов, они начинают идти навстречу друг другу, перемещаясь с одинаковой скоростью, по 1 шагу за один раз. После каждого шага один из них может выстрелить. Когда один из дуэлянтов стреляет, вероятность попасть в цель зависит от расстояния. После k шагов она составляет k /5, а значит, повышается с 0,2 после первого шага до 1 (определенность) после 5 шагов, когда соперники находятся напротив друг друга. Если один игрок выстрелит и промахнется, тогда как другому еще предстоит сделать выстрел, оба должны продолжать движение даже несмотря на то, что того, кто уже не может стрелять, ждет неминуемая смерть, — таковы правила кодекса чести аристократии. Каждый игрок получает выигрыш −1, если он сам будет убит, и 1, если будет убит его соперник. Если оба останутся живы или оба будут убиты, каждый получит выигрыш 0.

Это игра с пятью последовательными шагами и одновременными ходами (стрелять или не стрелять) на каждом шаге. Найдите совершенное равновесие подыгры в этой игре.

Подсказка: начните с шага 5, когда дуэлянты стоят прямо напротив друг друга. Составьте таблицу два на два для игры с одновременными ходами на этом этапе и найдите равновесие Нэша. Теперь перейдите к шагу 4, где вероятность попасть в цель составляет 4/5, или 0,8 для каждого игрока. Составьте таблицу два на два для игры с одновременными ходами на этом этапе, правильно указав в соответствующей ячейке, что произойдет в дальнейшем. Например, если один игрок стреляет и промахивается, а другой не стреляет, то другой подождет, пока сможет сделать пятый шаг, и точно попадет в цель. Если ни один из игроков не стреляет, тогда игра перейдет на следующий этап, по которому вы уже нашли равновесие. С помощью всей этой информации определите выигрыши в таблице два на два на шаге 4 и найдите равновесие Нэша на этом этапе. Для поиска равновесных стратегий всей игры проанализируйте оставшиеся шаги в обратном порядке.

U13.Опишите пример конкуренции между компаниями, аналогичный по своей структуре дуэли из упражнения U12.

Глава 7. Игры с одновременными ходами: смешанные стратегии

* * *

В ходе анализа игр с одновременными ходами в главе 4мы столкнулись с целым классом игр, нерешаемых посредством описанных там методов. Дело в том, что в играх этого класса нет равновесий Нэша в чистых стратегиях, и для того чтобы определить исход таких игр, необходимо расширить концепции стратегии и равновесий. Это можно сделать с помощью рандомизации ходов, которая и будет в центре внимания в данной главе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x