Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если q > 0,6, наилучший ответ p = 0 (чистая стратегия ПД).

Для быстрого подтверждения этих интуитивных выводов заметим, что при низком значении q (Навратилова с достаточно низкой вероятностью будет прикрывать удар ПЛ) Эверт следует выбрать ПЛ, а при высоком значении q (Навратилова с достаточно высокой вероятностью будет прикрывать удар ПЛ) — ПД. Точное значение этой «достаточности», а значит, и точка перехода на другую стратегию q = 0,6 зависят от конкретных выигрышей в данном примере [92].

Мы уже говорили о том, что смешанные стратегии — это просто особый тип непрерывной стратегии, в которой вероятность играет роль непрерывной переменной. Теперь мы нашли наилучшее значение p Эверт, соответствующее каждому значению q , выбранному Навратиловой. Иными словами, определили правило наилучших ответов Эверт, которое можно отобразить на графике так же, как мы это делали в главе 5.

Этот график расположен в левом фрагменте рисунка 7.2, где значения q показаны на горизонтальной оси, а значения p — на вертикальной. Обе вероятности ограничены диапазоном от 0 до 1. Если q меньше 0,6, p имеет максимальное значение 1; если q больше 0,6, p имеет минимальное значение 0. При q = 0,6 все значения p от 0 до 1 в равной степени наилучшие для Эверт, поэтому наилучший ответ — вертикальная линия, находящаяся между 0 и 1. Этому графику наилучших ответов присуща своя особенность: в отличие от непрерывно восходящих или нисходящих прямых или кривых линий в главе 5, данный график плоский в двух интервалах значений q и опускается за один шаг в точке сопряжения этих интервалов. Тем не менее в концептуальном смысле он ничем не отличается от любого другого графика наилучших ответов.

Рис. 7.2.Наилучшие ответы и равновесие в игре в теннис

Аналогичным образом можно вычислить правило наилучших ответов Навратиловой (ее наилучшую q -комбинацию, соответствующую каждой из p -комбинаций Эверт). Мы предлагаем вам сделать это самостоятельно, чтобы закрепить понимание самой концепции и алгебраических вычислений. Кроме того, вы должны проверить правильность интуитивных выводов в отношении выбора Навратиловой так, как мы это делали для Эверт. Мы же просто приведем здесь полученный результат.

Если p < 0,7, наилучший ответ q = 0 (чистая стратегия ПД).

Если p = 0,7, любая q -комбинация будет наилучшим ответом.

Если p > 0,7, наилучший ответ q = 1 (чистая стратегия ПЛ).

График этого правила наилучших ответов Навратиловой расположен в среднем фрагменте рис. 7.2.

В правом фрагменте рис. 7.2объединены графики из двух соседних фрагментов, причем левый график отражен по диагонали (линия p = q ) с тем, чтобы значения p оказались на горизонтальной оси, а значения q — на вертикальной, после чего совмещен со средним графиком. Теперь серые и черные линии пересекаются в одной точке, где p = 0,7, а q = 0,6. В этой точке выбор смешанной стратегии каждым игроком будет наилучшим ответом на выбор другого игрока, поэтому данная пара образует равновесие Нэша в смешанных стратегиях.

В таком представлении правил наилучших ответов чистые стратегии — особые случаи, соответствующие предельным значениям переменных p и q . Как видим, графики наилучших ответов не имеют общих точек на любой из сторон квадрата, где каждое значение p и q равно либо 0, либо 1. Это говорит об отсутствии в игре равновесий в чистых стратегиях, как и было показано в разделе 7 главы 4. В этом примере равновесие в смешанных стратегиях — единственное равновесие Нэша в данной игре.

С помощью метода, примененного нами в разделе 2.Адля поиска защищенного от использования значения p для Эверт, вы также можете вычислить выбор Навратиловой значения q , защищенного от использования. Выполнив соответствующие расчеты, получите значение q = 0,6. Таким образом, две выбранные участницами игры смешанные стратегии, защищенные от использования, на самом деле и наилучшие ответы друг на друга, которые представляют собой смешанные стратегии двух игроков, образующие равновесие Нэша.

В действительности, чтобы найти равновесие в смешанных стратегиях в игре с нулевой суммой, каждый участник которой располагает двумя чистыми стратегиями, не нужно проходить весь процесс определения правил наилучших ответов, построения соответствующих графиков и поиска точки их пересечения. Вы можете просто записать уравнения защищенности от использования из раздела 2.Апо комбинации каждого игрока, а затем решить их. Если в полученном решении обе вероятности попадают в диапазон от 0 до 1, вы нашли то, что нужно. Если одна из вероятностей имеет отрицательное значение или значение больше 1, значит, в данной игре нет равновесия в смешанных стратегиях и вам необходимо снова поискать его в чистых стратегиях. В разделе 6и разделе 7представлен анализ методов решения игр, участники которых имеют более двух чистых стратегий.

3. Равновесие Нэша как система убеждений и ответов

При одновременном выполнении ходов ни один из игроков не может отреагировать на фактический выбор другого игрока. Вместо этого каждый участник игры предпринимает свое наилучшее действие, исходя из представлений о том, какой именно ход выбирает в данный момент соперник. В главе 4мы назвали такие представления убеждениями игрока относительно выбора стратегии другим игроком, затем интерпретировали равновесие Нэша как конфигурацию стратегий, при которой эти убеждения верны, а значит, каждый игрок выбирает свой наилучший ответ на фактические действия другого игрока. Эта концепция оказалась весьма полезной для понимания структуры и исхода многих важных типов игр, особенно таких, как дилемма заключенных, координационные игры и игра в труса.

Однако в главе 4мы рассматривали исключительно равновесия Нэша в чистых стратегиях. По этой причине осталось почти незамеченным одно скрытое предположение: каждый игрок твердо убежден, что другой игрок выберет определенную чистую стратегию. Теперь, когда мы анализируем более общие смешанные стратегии, концепция убеждения требует новой интерпретации.

Порой игроки не уверены в предполагаемых действиях других участников игры. Так, в координационной игре из главы 4, в которой Гарри хочет встретиться с Салли, Гарри не уверен в том, куда отправится Салли — в Starbucks или Local Latte, и его убеждение может сводиться к тому, что она окажется в любом из этих кафе с вероятностью 50 на 50. А в примере с игрой в теннисЭверт могла осознавать, что Навратилова пытается держать ее в неведении, а значит, она (Эверт) не может быть уверена в том, какое из доступных действий выберет Навратилова. В разделе 4 главы 2мы обозначили такую ситуацию термином «стратегическая неопределенность», а в главе 4указали, что такая неопределенность приводит к формированию равновесий в смешанных стратегиях. Теперь же рассмотрим эту идею более подробно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x