Виталий Сигорский - Математический аппарат инженера
- Название:Математический аппарат инженера
- Автор:
- Жанр:
- Издательство:Технiка
- Год:1977
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виталий Сигорский - Математический аппарат инженера краткое содержание
Математический аппарат инженера - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
6. Найти произведения АВ и ВА и сравнить полученные результаты для матриц:
- 42 -
7. Проверить дистрибутивность умножения слева А(В + С) = АВ + АС и справа (А + В)С = АС + ВС относительно сложения для следующих матриц:
8. Найти все матрицы, перестановочные с матрицей
9. Каким условиям в общем случае должны удовлетворять элементы квадратных матиц А и В второго порядка, чтобы они были перестановочными (АВ = ВА)? Как выглядят эти условия для случая, когда А симметричная матрица?
10. При каких условиях справедливы матричные соотношения:
(A + B) 2= A 2+ 2AB +B 2; (A-B)(A+B) = A 2— B 2?
11. Каким условиям должны удовлетворять элементы ненулевых квадратных матриц А и В, чтобы АВ = 0?
12. К каким типам относятся матрицы:
13. Построить транспонированную A t, комплексно-сопряженную A̅ и сопряженную А* для матрицы
14. Показать, что матрица
является эрмитовой. Что можно сказать о диагональных элементах любой эрмитовой матрицы?
15. Какого типа должна быть квадратная матрица А, чтобы она была перестановочной с диагональной матрицей D того же порядка, т.е. чтобы AD = DA?
16. К какому типу относятся треугольные матрицы, если они кроме того: а) симметричные, б) кососимметричные?
17. Показать, что (A̅B̅) = A̅ B̅ и (AB)* = B* A*.
18. Проверить соотношение (AB)* = B*A* для матриц задачи 6в.
19. Показать, что произведение AA tсуществует для любой матрицы А и является симметричной матрицей.
- 43 -
20. Для заданных матриц найти обратные и проверить соотношение AA -1= 1:
21. Найти матрицы, обратные заданным, и проверить соотношение (AB) -1= B -1A -1:
22. Дана система уравнений:
Записать эту систему в матричной форме Ax = q, вычислить обратную матрицу А -1и записать решение системы.
23. Зависимости между токами и напряжениями четырехполюсника (рис. 6, а) можно представить одной из систем уравнений:
Рис. 6. Соединение четырехполюсника: а — четырехполюсник; б — последовательное соединение; в — параллельное соединение.
а) Записать эти уравнения в матричной форме и установить зависимости между элементами матриц:
б) Показать, что матрица А последовательного соединения четырехполюсников (рис 6. б) равна произведению их матриц A' и A'', т.е. A = A' A'' (в порядке следования).
в) Показать, что матрица Y параллельного соединения четырехполюсников (рис. 6, в) равна сумме их матриц Y' и Y'', т.е. Y = Y' + Y''.
- 44 -
24. Выполнить умножение матриц, воспользовавшись разбиением их на блоки:
Проверить результат непосредственным умножением матриц.
4. Графы
1. Происхождение графов. Многие задачи сводятся к рассмотрению совокупности объектов, существенные свойства которых описываются связями между ними. Например, глядя на карту автомобильных дорог, можно интересоваться только тем, имеется ли связь между некоторыми населенными пунктами, отвлекаясь от конфигурации и качества дорог, расстояний и других подробностей. При изучении электрических цепей на первый план может выступать характер соединений различных ее компонентов - резисторов, конденсаторов, источников и т. п. Органические молекулы образуют структуры, характерными свойствами которых являются связи между атомами. Интерес могут представлять различные связи и отношения между людьми, событиями, состояниями и вообще между любыми объектами.
В подобных случаях удобно рассматриваемые объекты изображать точками, называемыми вершинами, а связи между ними - линиями (произвольной конфигурации), называемыми ребрами. Множество вершин V, связи между которыми определены множеством ребер Е, называют графом и обозначают 0 = (V, Е).
Первая работа по графам была опубликована двадцатилетним Леонардом Эйлером в 1736 г., когда он работал в Российской Академии наук. Она содержала решение задачи о кенигсбергских мостах

Рис. 7. К задаче о кенигсбергских мостах:
а — план города; б — граф.
(рис. 7, а): можно ли совершить прогулку таким образом, чтобы выйдя из любого места города, вернуться в него, пройдя в точности один раз по каждому мосту? Ясно, что по условию задачи не имеет значения, как проходит путь по частям суши а, b, с, d, на которых расположен г. Кенигсберг (ныне Калининград), поэтому их можно представить вершинами. А так как связи между этими частями осуществляются только через семь мостов, то каждый из них изображается ребром, соединяющим соответствующие вершины. В результате
- 45 -
получаем граф, изображенный на рис. 7, б. Эйлер дал отрицательный ответ на поставленный вопрос. Более того, он доказал, что подобный маршрут имеется только для такого графа, каждая из вершин которого связана с четным числом ребер.
С тех пор поток задач с применением графов нарастал подобно снежной лавине. Наряду с многочисленными головоломками и игграми на графах, рассматривались важные практические проблемы, многие из которых требовали тонких математических методов. Уже в середине прошлого века Кирхгоф применил графы для анализа электрических цепей, а Кэли исследовал важный класс графов для выявления и перечисления изомеров насыщенных углеводородов.
Читать дальшеИнтервал:
Закладка: