Саймон Сингх - Симпсоны и их математические секреты
- Название:Симпсоны и их математические секреты
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2016
- Город:Москва
- ISBN:978-5-00100-034-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Саймон Сингх - Симпсоны и их математические секреты краткое содержание
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.
Симпсоны и их математические секреты - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Три особых числа, появившиеся на экране Jumbo-Vision, случайному зрителю показались бы произвольно выбранными и ничем не примечательными, но зрители с математическим складом ума сразу бы поняли, что каждое из них замечательно по-своему.
Первое число 8191 – простое число. В действительности оно относится к особому классу простых чисел, известному как числа Мерсенна . Этот класс назван в честь Марена Мерсенна, который в 1611 году стал членом ордена минимов в Париже и с тех пор делил свое время между молитвами Богу и поклонением математике. Мерсенн проявлял особый интерес к набору чисел вида 2 p − 1, где p – любое простое число. В приведенной ниже таблице показано, что произойдет, если подставить все простые числа меньше 20 в формулу 2 p −1.

Поразительное свойство этой таблицы состоит в том, что формула 2 p − 1, похоже, генерирует числа, которые могут быть простыми. На самом деле все числа в правом столбце простые, за исключением числа 2047, поскольку 2047 = 23 × 89. Другими словами, формула 2 p − 1 – это рецепт, использующий в качестве ингредиентов простые числа для образования новых простых чисел. Например, если p = 13, тогда 2¹³ − 1 = 8191, а это и есть простое число Мерсенна, присутствующее в эпизоде «Мардж и Гомер спасают чужой брак».
Числа Мерсенна считаются звездами в мире чисел, так как могут быть очень большими. Некоторые из них относятся к категории титанических простых чисел (имеют более тысячи знаков), некоторые – гигантских простых чисел (более десяти тысяч знаков), а самые большие называют мегапростыми числами (более одного миллиона знаков). Десять наиболее больших известных простых чисел Мерсенна – это самые большие простые числа из когда-либо найденных. Самое большое число Мерсенна (2 57885161− 1), которое было открыто в январе 2013 года, имеет свыше семнадцати миллионов знаков [33].
Второе число на экране стадиона, 8128, известно как совершенное число . Совершенство в контексте числа зависит от его делителей, а именно тех чисел, на которые оно делится без остатка. Например, делители числа 10 – 1, 2, 5 и 10. Число считается совершенным, если оно равно сумме своих делителей, отличных от самого числа. Самое маленькое совершенное число – 6, поскольку 1, 2 и 3 – это его делители, а 1 + 2 + 3 = 6. Второе совершенное число – 28, потому что его делители – 1, 2, 4, 7 и 14, а 1 + 2 + 4 + 7 + 14 = 28. Третье совершенное число – 496, а четвертое – 8128: именно то число, которое появляется в эпизоде «Мардж и Гомер спасают чужой брак».
Об этих четырех совершенных числах знали еще древние греки, однако математикам пришлось больше тысячелетия ждать открытия трех следующих совершенных чисел: 33 550 336 было обнаружено примерно в 1460 году, а затем, в 1588-м, было объявлено об открытии чисел 8 589 869 056 и 137 438 691 328. Как сказал французский математик XVII столетия Рене Декарт, «совершенные числа, как и совершенные люди, встречаются крайне редко».
Исходя из того, что совершенных чисел очень мало, легко сделать поспешный вывод о существовании их конечного количества. Но тем не менее математики до сих пор не смогли это доказать. Кроме того, все известные совершенные числа четные, поэтому велика вероятность, что и те совершенные числа, которые будут когда-то найдены, также окажутся четными. Но и это пока никто не доказал.
Несмотря на эти пробелы в знаниях, нам все же кое-что известно о совершенных числах. Например то, что четные совершенные числа (а ими могут оказаться все числа такого рода) – это также треугольные числа :
6 = 1 + 2 + 3

28 = 1 + 2 + 3 + 4 + 5 + 6 + 7

Кроме того, мы знаем, что четные совершенные числа (за исключением числа 6) всегда представляют собой сумму нескольких следующих подряд нечетных чисел, возведенных в третью степень:
28 = 1³ + 3³
496 = 1³ + 3³ + 5³ + 7³
8128 = 1³ + 3³ + 5³ + 7³ + 9³ + 11³ + 13³ + 15³
И последнее, но не менее важное замечание: нам известно о существовании тесной связи между совершенными числами и простыми числами Мерсенна. В действительности математики доказали, что каждая из этих групп содержит одно и то же количество чисел, и показали, что каждое число Мерсенна можно использовать для генерирования совершенного числа. Следовательно, всего мы знаем сорок восемь совершенных чисел, потому что знаем только сорок восемь чисел Мерсенна.
Третье число на экране стадиона – 8208 – тоже особенное, поскольку оно относится к категории так называемых самовлюбленных чисел [34]. Оно равно сумме своих цифр, возведенных в степень, равную количеству этих цифр:
8208 = 8 4+ 2 4+ 0 4+ 8 4= 4096 + 16 + 0 + 4096
Причина, почему это число называют самовлюбленным, заключается в том, что его же собственные цифры используются для генерации самого числа. Создается впечатление, что такое число одержимо собой, почти влюблено в само себя.
Есть масса других примеров самовлюбленных чисел, например 153, которое равно 1³ + 5³ + 3³, однако доказано, что существует их конечное количество. В действительности есть всего восемьдесят восемь самовлюбленных чисел, среди которых самое большое – 115 132 219 018 763 992 565 095 597 973 971 522 401.
Тем не менее, если мы ослабим ограничения, то появится возможность сгенерировать так называемые сумасбродные самовлюбленные числа . Они могут быть образованы с помощью собственных цифр любым возможным способом. Вот несколько примеров сумасбродных самовлюбленных чисел:
6859 = (6 + 8 + 5) √9
24739 = 2 4+ 7! + 3 9
23328 = 2 × 3 3!× 2 × 8
Итак, благодаря визиту Гринволд и Нестлера в эпизоде «Мардж и Гомер спасают чужой брак» появились простое число Мерсенна, совершенное число и самовлюбленное число. На протяжении многих лет мультсериал «Симпсоны» оказывал влияние на методику преподавания, теперь же ситуация изменилась на прямо противоположную: профессора оказали влияние на «Симпсонов».
Но почему авторы мультсериала выбрали именно эти числа для демонстрации на экране Jumbo-Vision? Ведь существуют сотни видов интересных чисел, и любые могли бы сыграть свою роль в эпизоде. Например, так называемые числа-вампиры , цифры которых можно разделить таким образом, чтобы образовались два новых числа (известных как «клыки» ), произведение которых равно исходному числу. Например, 136 948 – это число-вампир, поскольку 136 948 = 146 × 938. Еще более интересный пример – число 16 758 243 290 880, потому что его клыки можно сформировать четырьмя разными способами:
1675824290880 = 1982736 × 8452080
1675824290880 = 2123856 × 7890480
Читать дальшеИнтервал:
Закладка: