Саймон Сингх - Симпсоны и их математические секреты

Тут можно читать онлайн Саймон Сингх - Симпсоны и их математические секреты - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Симпсоны и их математические секреты
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00100-034-1
  • Рейтинг:
    2.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Саймон Сингх - Симпсоны и их математические секреты краткое содержание

Симпсоны и их математические секреты - описание и краткое содержание, автор Саймон Сингх, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.

Симпсоны и их математические секреты - читать онлайн бесплатно полную версию (весь текст целиком)

Симпсоны и их математические секреты - читать книгу онлайн бесплатно, автор Саймон Сингх
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1675824290880 = 2751840 × 6089832

1675824290880 = 2817360 × 5948208

Если бы сценаристы захотели использовать в высшей степени особенное число, они могли бы выбрать безукоризненное число . Таких чисел всего два, поскольку они должны удовлетворять двум строгим требованиям, имеющим отношение к совершенству. Во-первых, общее количество делителей этого числа должно быть совершенным числом; во-вторых, сумма этих делителей тоже должна быть совершенным числом. Первое безукоризненное число – 12, так как его делители – 1, 2, 3, 4, 6 и 12. Количество делителей равно 6, а их сумма – 28, причем 6 и 28 – совершенные числа. Второе безукоризненное число – 6 086 555 670 238 378 989 670 371 734 243 169 622 657 830 773 351 885 970 528 324 860 512 791 691 264.

По словам сценаристов, они выбрали число Мерсенна, совершенное число и самовлюбленное число для эпизода «Мардж и Гомер спасают чужой брак» только потому, что все они примерно равны реальному количеству зрителей на бейсбольном стадионе. Кроме того, именно эти числа первыми пришли им в голову. Поправки в сценарий вносились в последнюю минуту, поэтому авторам некогда было долго думать над выбором чисел.

Но теперь, по прошествии времени, я готов поспорить, что сценаристы выбрали самые подходящие числа, поскольку они еще видны на экране в момент появления Табиты Викс, причем каждое из них как будто представляет собой ее точное описание. Будучи одним из наиболее эффектных персонажей «Симпсонов», Табита считает себя совершенной женщиной в расцвете лет [35], поэтому неудивительно, что она – самовлюбленный человек. В действительности в самом начале эпизода Табита, одетая в откровенное платье, вызывающе танцует перед восхищенными бейсбольными фанатами мужа, так что появление сумасбродного самовлюбленного числа на экране стадиона более чем уместно.

* * *

Хотя Гринволд и Нестлер могут показаться исключительными преподавателями, они не единственные, кто обсуждает «Симпсонов» на своих лекциях. Джоэл Сокол из Технологического института Джорджии в курсе лекций под названием «Принятие решений в противостоянии с соперником: практическое применение математической оптимизации» использует слайды с описанием игры «камень, ножницы, бумага», в которую играют герои «Симпсонов». Этот курс лекций посвящен теории игр – области математики, которая занимается моделированием поведения участников в конфликтных ситуациях и партнерских отношениях. Теория игр может помочь нам понять очень многое, от домино до военных действий, от животного альтруизма до переговоров профсоюзов. Точно так же Дирк Матри, экономист Университета штата Пенсильвания, активно интересующийся математикой, использует сцены из «Симпсонов» с игрой «камень, ножницы, бумага», когда рассказывает студентам о теории игр.

На первый взгляд кажется, что «камень, ножницы, бумага» (сокращенно КНБ) – достаточно простая игра, поэтому вас удивит тот факт, что она может представлять какой-либо интерес с точки зрения математики. Тем не менее в руках специалиста по теории игр КНБ становится сложной битвой между двумя соперниками, пытающимися перехитрить друг друга. На самом деле в КНБ много скрытых математических тонкостей.

Но прежде чем их раскрыть, позвольте кратко описать правила игры. В КНБ участвуют два игрока, которые играют по очень простым правилам. Сначала они вместе считают «Раз, два, три…» и на счете «три» показывают рукой один из трех знаков: камень (сжатый кулак), бумага (открытая, плоская ладонь) или ножницы (указательный и средний пальцы образуют букву V). Победитель определяется по принципу «круговой иерархии»: камень затупляет ножницы (побеждает камень); ножницы режут бумагу (побеждают ножницы); бумага заворачивает камень (побеждает бумага). Если оба игрока выбрали один и тот же знак, значит, в этом раунде будет ничья.

За многие столетия в разных культурах сформировались свои варианты этой игры, от индонезийского «слон, человек, уховертка» до «НЛО, микроб, корова», созданного любителями научной фантастики. В последней версии НЛО расчленяет корову, корова поедает микробы, а микробы заражают НЛО.

Хотя каждая культура имеет свои элементы игры, общие правила остаются неизменными. При их наличии можно использовать логику математической теории игр, чтобы определить лучшую стратегию игры. Это было продемонстрировано в эпизоде «Фронт» (The Front, сезон 4, эпизод 19; 1993 год), когда Барт и Лиза играют в КНБ, чтобы решить, чье имя следует указать первым в их совместном сценарии к «Шоу Щекотки и Царапки». Если взглянуть на игру КНБ с точки зрения Лизы, то ее лучшая стратегия зависит от ряда факторов. Например от того, что Лиза знает о сопернике – новичок он или профессионал – и что соперник знает о Лизе, а также какова цель: выиграть или избежать поражения?

Если бы Лиза играла с чемпионом мира, она могла бы воспользоваться стратегией случайного хода, поскольку даже чемпион мира не мог бы предсказать, что она выберет: камень, ножницы или бумагу. Это обеспечило бы Лизе равные шансы на выигрыш, проигрыш или ничью. Однако Лиза играет с братом, а он не чемпион мира по КНБ, поэтому она предпочитает стратегию, основанную на собственном опыте: Барт всегда выбирает камень. В итоге Лиза выбрасывает бумагу, чтобы победить камень Барта. Как и следовало ожидать, ее план срабатывает. Плохая привычка Барта согласуется с результатами исследования, проведенного Всемирным обществом КНБ, которые гласят, что камень – в целом самый популярный знак, особенно среди мальчиков.

Применение правильной стратегии игры, основанной на теории игр, сыграло в свое время ключевую роль, когда японская компания Maspro Denkoh выставила в 2005 году на аукцион свою коллекцию произведений искусства. Для того чтобы решить, с каким аукционным домом заключить многомиллионный контракт, с Sotheby’s или Christie’s, в Maspro Denkoh устроили между их представителями битву по КНБ. Международный директор отдела импрессионизма и современного искусства Christie’s Николас Маклин отнесся к этому настолько серьезно, что попросил совета у своих одиннадцатилетних дочерей-двойняшек. Опыт двойняшек подтверждали результаты исследования Всемирного общества КНБ, поскольку девочки тоже считали, что камень – самый распространенный ход. Более того, они обратили внимание, что продвинутые игроки знают об этом и выбирают в качестве своего хода бумагу. Интуиция подсказывала Маклину, что в Sotheby’s остановятся именно на этой продвинутой стратегии, поэтому посоветовал боссам в Christie’s сделать еще более тонкий ход, выбросив ножницы. Представители Sotheby’s действительно выбрали бумагу, поэтому Christie’s выиграли.

Еще один уровень математических тонкостей возникает, когда мы придаем игре КНБ дальнейший импульс, включив в нее больше вариантов. Прежде всего необходимо подчеркнуть, что любая новая версия КНБ должна иметь нечетное количество вариантов ( N ). Это единственный способ сбалансировать игру, так как каждый вариант выигрывает и проигрывает равному количеству других вариантов: ( N – 1)/2. Следовательно, не существует такой версии КНБ, в которой было бы четыре варианта хода, но есть версия с пятью вариантами, придуманная программистом Сэмом Кассои и ставшая популярной после появления в восьмой серии второго сезона телесериала «Теория большого взрыва» (The Big Bang Theory, 2008 год), под названием «камень, ножницы, бумага, ящерица, Спок» (сокращенно КНБЯСп). Вот круговая иерархия и жесты для игры «камень, ножницы, бумага, ящерица, Спок».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Саймон Сингх читать все книги автора по порядку

Саймон Сингх - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Симпсоны и их математические секреты отзывы


Отзывы читателей о книге Симпсоны и их математические секреты, автор: Саймон Сингх. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x