Саймон Сингх - Симпсоны и их математические секреты
- Название:Симпсоны и их математические секреты
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2016
- Город:Москва
- ISBN:978-5-00100-034-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Саймон Сингх - Симпсоны и их математические секреты краткое содержание
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.
Симпсоны и их математические секреты - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Топологов не интересуют углы и расстояния: очевидно, что в процессе растягивания резинового листа они меняются. Но их волнуют более фундаментальные свойства. Например, фундаментальное свойство буквы А – что она, по сути, представляет собой петлю с двумя ножками. Буква R – тоже петля с двумя ножками. Следовательно, буквы Aи Rгомеоморфны, так как букву A, нарисованную на резиновом листе, можно преобразовать в букву Rпосредством соответствующего растягивания
Однако никакое растягивание не поможет превратить букву Aв букву Hввиду того, что эти буквы принципиально отличаются друг от друга: A состоит из одной петли и двух ножек, а Hвообще не имеет петель. Единственный способ превратить букву Aв H – разрезать резиновый лист у верхушки A, что разомкнет петлю. Однако в топологии разрезание запрещено.
Принципы геометрии на резиновом листе можно расширить на три измерения, что объясняет остр о ту, будто тополог – это тот, кто не видит разницы между пончиком и кофейной чашкой. Другими словами, у кофейной чашки одно отверстие, образованное ручкой, и у пончика одно отверстие, прямо посередине. Следовательно, кофейную чашку, сделанную из эластичной глины, можно растянуть и скрутить в форме пончика. Это и делает их гомеоморфными.
Напротив, пончик невозможно превратить в сферу, поскольку в ней нет отверстий, и никакое растягивание, сжатие и скручивание не помогут удалить дыру, которая является неотъемлемой частью пончика. В действительности тот факт, что пончик отличается от сферы в топологическом смысле, – доказанная математическая теорема. Тем не менее каракули Гомера на доске говорят о том, что ему будто бы удалось совершить невозможное, так как рисунки отображают успешную трансформацию пончика в сферу. Но как?
Хотя в топологии разрезание запрещено, Гомер решил, что откусывание вполне приемлемо. В конце концов, исходный объект – пончик, так кто же удержится от соблазна немного от него откусить? Если откусить от пончика несколько кусочков, он будет похож на банан, который можно превратить в сферу посредством стандартного растягивания, сжатия и скручивания. По всей вероятности, профессиональные топологи пришли бы в ужас от того, что их любимая теорема превратилась в пепел, но согласно личным правилам топологии Гомера, пончик и сфера идентичны. Возможно, корректнее было бы назвать их не гомеоморфными , а гомероморфными .
Вторая строка на доске Гомера, пожалуй, самая интересная, поскольку она содержит такое равенство:
3987¹² + 4365¹² = 4472¹²
На первый взгляд уравнение выглядит безобидным, если только вы не знаете кое-что из истории математики, – иначе вы с отвращением разобьете в щепки свою логарифмическую линейку. Похоже, Гомеру удалось совершить невозможное – найти решение знаменитой загадки последней теоремы Ферма!
Пьер Ферма предложил эту теорему в 1637 году. Несмотря на то что Ферма был любителем, решавшим задачи исключительно в свободное время, он является одним из величайших математиков в истории. Ферма работал в уединении в своем доме на юге Франции, и его единственным математическим компаньоном была книга под названием Arithmetica [10] Диофант Александрийский. Арифметика и книга о многоугольных числах. ЛКИ, 2007.
, написанная Диофантом Александрийским в третьем веке нашей эры. Читая этот древнегреческий текст, Ферма обратил внимание на раздел со следующим уравнением:
x ² + y ² = z ²
Хотя это уравнение имеет непосредственное отношение к теореме Пифагора, Диофанта не интересовали треугольники и длины их сторон. Вместо этого он поставил перед читателями задачу решить его в целых числах. Ферма уже был знаком с методами поиска таких решений, кроме того, он знал, что у этого уравнения их бесконечное множество. К числу этих решений, которые называют «пифагоровыми тройками», относятся следующие:
3² + 4² = 5²
5² + 12² = 13²
133² + 156² = 205²
Поскольку загадка Диофанта показалась Ферма скучной, он решил проанализировать ее другой вариант и найти целые решения такого уравнения:
x³ + y ³ = z ³
Несмотря на все усилия, Ферма удалось найти только тривиальные решения с участием нуля, такие как 0³ + 7³ = 7³. При попытке отыскать более содержательные решения самым лучшим, что он смог предложить, было уравнение, отличающееся от искомого всего на единицу: 6³ + 8³ = 9³ − 1.
Более того, при дальнейшем увеличении степени, в которую возводятся x, y и z , попытки найти целые решения каждый раз заканчивались ничем. Ферма пришел к выводу, что целочисленных решений для любого из следующих уравнений нет:
x ³ + y ³ = z ³
x 4+ y 4= z 4
x 5+ y 5= z 5
x 6+ y 6= z 6
x n + y n = z n , где n > 2
Однако в конце концов Ферма совершил прорыв. Он не нашел множества чисел, которые стали бы решением одного из этих уравнений, но зато сформулировал доказательство того, что такого решения не существует, и в связи с этим набросал на полях «Арифметики» пару интригующих предложений на латыни. Начав с утверждения о том, что целочисленных решений любого из бесконечного множества упомянутых выше уравнений нет, затем он уверенно прибавил: «Cuius rei demonstrationem mirabilem sane detexi, hanc marginis exiguitas non caperet» («Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него»).
Пьер Ферма нашел доказательство, но не удосужился его записать. Пожалуй, это самая удручающая запись за всю историю математики, особенно учитывая тот факт, что Ферма унес свой секрет в могилу.
Впоследствии сын Ферма Клемент-Самуэль обнаружил отцовский экземпляр «Арифметики» и обратил внимание на эту интригующую заметку на полях. Кроме того, он нашел в книге еще много ценных записей, ведь Ферма имел привычку, заявив об очередном доказательстве, редко записывать его. Клемент-Самуэль решил опубликовать новую редакцию «Арифметики» со всеми заметками своего отца, сделанными на полях первого издания, и она вышла в 1670 году. Это оживило математическое сообщество, пробудив у его представителей острое желание найти отсутствующие доказательства, связанные с каждым заявлением Ферма. И, надо сказать, постепенно они подтвердили правоту Ферма во всех случаях, кроме одного. Никто не смог доказать, что уравнение x n + y n = z n ( n > 2) не имеет решений. В итоге его назвали «последняя теорема Ферма», поскольку оно было единственным, остающимся недоказанным.
Шли десятилетия, а теорема Ферма так и оставалась загадкой, над решением которой бились многие математики, считая это делом чести. Например, немецкий промышленник Пауль Вольфскель, умерший в 1908 году, завещал 100 000 марок (в наше время эта сумма эквивалентна 1 миллиону долларов) в качестве вознаграждения тому, кто все же расколет этот крепкий орешек. По некоторым свидетельствам, Вольфскель не выносил свою жену и других членов семьи, поэтому его завещание должно было унизить их и воздать должное математике – предмету, который он обожал. Другие утверждают, что премия стала способом выражения благодарности Ферма за то, что в период, когда Вольфскель был на грани самоубийства, увлеченность этой теоремой наполнила его жизнь смыслом.
Читать дальшеИнтервал:
Закладка: