Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Жюль Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Алгоритм, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теорема века. Мир с точки зрения математики
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Алгоритм
  • Год:
    2020
  • Город:
    М.
  • ISBN:
    978-5-907255-12-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Жюль Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Жюль Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Представим себе, что поверхность нашей плоскости покрыта воображаемой материей, плотность которой переменна, но изменяется она непрерывно. Условимся принять, что вероятное число изображающих точек, приходящихся на данную часть плоскости, пропорционально количеству находящейся здесь воображаемой материи. Поэтому, если мы имеем на плоскости две области одинаковых размеров, то вероятности того, что точка, изображающая одну из наших малых планет, находится в той или другой из этих областей, будут относиться, как средние плотности воображаемой материи в той или другой области.

Вот, следовательно, два распределения: одно – действительное, где изображающие точки крайне многочисленны, крайне скучены, но разделены, как молекулы материи по атомистической гипотезе; другое – расходящееся с действительностью, где наши изображающие точки заменены воображаемой непрерывной материей. Относительно последней мы знаем, что она не может быть реальной, но наше незнание вынуждает нас принять ее.

Если бы затем мы имели какое-нибудь представление о действительном распределении изображающих точек, то мы могли бы условиться так, чтобы во всякой области плотность этой воображаемой непрерывной материи была приблизительно пропорциональна числу изображающих точек или, если угодно, числу атомов, заключающихся в этой области. Но и этот прием невозможен, наше незнание столь велико, что мы принуждены выбирать произвольно функцию, определяющую плотность нашей воображаемой материи. Мы вынуждены принять только одну гипотезу, которой мы почти не в состоянии избежать, – мы предположим эту функцию непрерывной. Этого, как мы увидим, достаточно для того, чтобы мы могли сделать некоторое заключение.

Каково вероятное распределение малых планет в момент t ? Или, иначе, каково вероятное значение синуса долготы в момент t , т. е. sin( аt + b )? Мы начали с произвольного соглашения; если мы примем его, то это вероятное значение вполне определено. Разобьем плоскость на элементы площади. Рассмотрим значение sin( at + b ) в центре каждого из этих элементов; умножим эту величину на площадь элемента и на соответствующую плотность воображаемой материи; составим затем сумму для всех элементов плоскости. Эта сумма по определению будет искомой вероятной средней величиной, которая окажется, таким образом, выраженной при помощи двойного интеграла.

Можно сначала подумать, что эта средняя величина будет зависеть от выбора функции φ, определяющей плотность воображаемой материи, и что так как эта функция φ произвольна, то в зависимости от произвольного выбора, который мы сделаем, мы можем получить какую угодно среднюю величину. Но это совсем не так.

Простое вычисление показывает, что наш двойной интеграл очень быстро убывает с возрастанием t .

Таким образом, я совершенно не знал, какую гипотезу мне допустить относительно вероятности того или иного начального распределения; но каково бы ни было сделанное допущение, результат будет тот же: это и выводит меня из затруднения.

Какова бы ни была функция φ, средняя величина стремится к нулю с возрастанием t , и так как малые планеты, конечно, совершили очень большое число обращений, то я могу утверждать, что эта средняя величина очень мала.

Я могу выбрать φ по своему желанию, однако с одним ограничением: эта функция должна быть непрерывной; и в самом деле, с точки зрения субъективной вероятности выбор прерывной функции был бы неразумным; какое основание имел бы я, например, предполагать, что начальная долгота может быть равна именно 0°, но что она не может быть заключена между 0° и 1°?

Но трудность возникает вновь, если стать на точку зрения объективной вероятности – если мы перейдем от нашего воображаемого распределения, где воображаемая материя предполагалась непрерывной, к действительному распределению, где наши изображающие точки образуют собой как бы дискретные атомы.

Среднее значение sin( at + b ) представится просто через

1/n ∑ sin(at + b)

где n – число малых планет. Вместо двойного интеграла, относящегося к непрерывной функции, мы имеем сумму дискретных членов, и между тем никто серьезно не усомнится в том, что это среднее значение будет на самом деле очень мало.

Именно вследствие того, что наши изображающие точки крайне скучены, наша дискретная сумма вообще будет очень мало отличаться от интеграла.

Интеграл есть предел, к которому стремится сумма членов, когда число этих членов беспредельно возрастает. Если членов очень много, то сумма будет очень мало отличаться от своего предела, т. е. от интеграла, и то, что я сказал о последнем, будет справедливо и для суммы.

Тем не менее существуют исключительные случаи.

Если бы, например, для всех малых планет имело место равенство b = π/2 – at , то в момент t долгота всех планет равнялась бы π/2 и среднее значение было бы, очевидно, равно 1. Для этого было бы необходимо, чтобы в момент t = 0 все малые планеты были размещены на некоторой спирали особенной формы с крайне тесно сближенными витками. Всякий признает, что подобное начальное распределение крайне невероятно (и даже если допустить его в действительности, то распределение было бы неравномерным для некоторого момента, например, 1 января 1900 г., но оно перешло бы в равномерное через несколько лет).

Однако почему мы признаем такое начальное распределение невероятным? Необходимо это выяснить, так как если бы мы не имели основания отбросить эту нелепую гипотезу как не заслуживающую доверия, то все бы рушилось и мы уже ничего не могли бы утверждать относительно вероятности того или иного действительного распределения.

Мы опираемся здесь опять-таки на принцип достаточного основания, принцип, к которому постоянно приходится возвращаться. Мы могли бы допустить, что вначале планеты были распределены приблизительно на прямой линии или что они были расположены неравномерно; но, как нам кажется, нет достаточного основания предполагать, что неизвестная причина, породившая их, действовала, следуя столь правильной и в то же время столь сложной кривой, которая представлялась бы выбранной умышленно как раз для того, чтобы нынешнее распределение не было равномерным.

IV. Красное и черное. Вопросы теории азартных игр, например игры в рулетку, в сущности, вполне аналогичны тем, которые мы только что рассматривали.

Представим себе циферблат, разделенный на большое число равных делений, попеременно красных и черных; в центре его укреплена вращающаяся стрелка; после сильного разгона эта стрелка, сделав значительное число оборотов, остановится против одного из делений. Вероятность того, что это деление красное, очевидно, равна х /2.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жюль Пуанкаре читать все книги автора по порядку

Жюль Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Жюль Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x