Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Жюль Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Алгоритм, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теорема века. Мир с точки зрения математики
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Алгоритм
  • Год:
    2020
  • Город:
    М.
  • ISBN:
    978-5-907255-12-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Жюль Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Жюль Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

I. Теория Ампера. В своих экспериментальных исследованиях взаимодействий токов Ампер имел и мог иметь дело только с замкнутыми токами.

Это не значит, что он отрицал возможность незамкнутых токов. Если мы соединим проволокой два противоположно заряженных проводника, то появится ток, идущий от одного из них к другому и продолжающийся до тех пор, пока потенциалы обоих не сравняются. Согласно идеям, господствовавшим во времена Ампера, такой ток считался незамкнутым; наличие тока от первого проводника ко второму было очевидно; тока, который шел бы от второго к первому, не замечали.

Токи подобной природы (например, токи, возникающие при разряде конденсаторов) Ампер рассматривал как незамкнутые; но он не мог сделать их предметом своих опытов, так как длительность их слишком мала.

Можно представить себе еще и другой вид незамкнутого тока. Пусть имеются два заряженных проводника А и В , соединенных проволокой АМВ . Пусть небольшие подвижные проводящие тела приходят сначала в соприкосновение с проводником В , отнимают у него часть заряда, затем контакт их с В прекращается, они движутся по пути BNA , перенося с собой свой заряд, приходят в соприкосновение с А и передают ему этот заряд, который затем снова возвращается в B , переходя по проволоке АМВ . Мы имеем здесь в некотором смысле замкнутый ток, потому что электричество циркулирует по замкнутому пути BNAMB ; но две части этого тока весьма различны между собой: в проволоке АМВ электричество перемещается по твердому проводнику подобно гальваническому току, преодолевая омическое сопротивление и выделяя теплоту; принято говорить, что здесь имеет место ток проводимости; в части BNA электричество переносится подвижным проводником: это – так называемый конвекционный ток.

Если теперь рассматривать конвекционный ток как совершенно аналогичный току проводимости, то контур BNAMB является замкнутым: если, напротив, конвекционный ток не является «настоящим током», например, если он не оказывает действия на магниты, то остается лишь ток проводимости АМВ , который будет незамкнутым.

Пример подобного процесса может быть осуществлен, если соединить проволокой два полюса машины Гольца: вращающийся заряженный круг переносит электричество путем конвекции от одного полюса к другому; затем оно по проволоке возвращается к первому полюсу, осуществляя ток проводимости. Но получение подобных токов сколько-нибудь значительной силы является делом весьма трудным; при тех средствах, какими располагал Ампер, это было прямо невозможно. Одним словом, Ампер мог составить себе идею о двух типах незамкнутых токов, но он не был в состоянии подвергнуть опытному исследованию как те, так и другие, так как или сила их была слишком ничтожна, или длительность их была слишком мала.

Итак, на опыте он мог обнаружить лишь действие замкнутого тока на другой замкнутый ток или, точнее, действие одного замкнутого тока на часть другого, так как можно пропустить ток по замкнутому контуру, состоящему из одной части подвижной и другой – неподвижной. В этом случае возникает возможность изучать перемещения подвижной части под действием другого замкнутого тока. Что касается действий незамкнутого тока как на замкнутый ток, так и на другой незамкнутый ток, то изучить их Ампер не имел никакого средства.

1. Случай замкнутых токов. В случае взаимодействия двух замкнутых токов Ампер нашел из опыта замечательно простые законы. Я бегло возобновлю в памяти читателя те из них, которые будут нам впоследствии полезны.

а) Если сила токов поддерживается постоянной и если два контура, подвергавшиеся каким угодно перемещениям и деформациям, возвращаются затем к своей начальной конфигурации, то полная работа электродинамических сил будет равна нулю. Другими словами, здесь существует электродинамический потенциал двух контуров, который пропорционален произведению сил токов и зависит от формы и относительного положения контуров; работа электродинамических сил равна изменению этого потенциала.

б) Действие замкнутого соленоида равно нулю.

в) Действие контура С на другой контур С’ определяется исключительно «магнитным полем», присущим контуру С . В самом деле, в каждой точке пространства можно определить по величине и направлению некоторую силу, так называемую магнитную силу, обладающую следующими свойствами:

а) сила, с которой контур С действует на магнитный полюс, приложена к этому полюсу; она равна магнитной силе, умноженной на магнитную массу полюса;

б) магнитная стрелка весьма малых размеров стремится принять направление магнитной силы, и пара, которая стремится привести ее в это положение, пропорциональна произведению магнитной силы, магнитного момента стрелки и синуса угла отклонения;

в) если контур С’ перемещается, то работа электродинамической силы, с которой С действует на С’ , равна приращению «магнитного силового потока», пронизывающего этот контур.

2. Действие замкнутого тока на элемент тока. Не будучи в состоянии осуществить незамкнутый ток в собственном смысле слова, Ампер имел лишь одно средство изучать действие замкнутого тока на элемент тока. Оно состояло в использовании контура С’ , составленного из двух частей – одной неподвижной, другой подвижной. Роль подвижной части играла, например, подвижная проволока αβ, концы которой α и β могли скользить вдоль другой проволоки, укрепленной неподвижно. В одном из положений подвижной проволоки конец α лежал на точке А неподвижной проволоки, а конец β – на точке В ее. Ток шел из α в β, или – это все равно – из А в B вдоль подвижной проволоки, а из B в А возвращался по неподвижной. Таким образом, это был замкнутый ток.

В другом положении, в которое подвижная проволока приходит после некоторого скольжения, конец α лежит в другой точке А’ неподвижной проволоки, конец β – также в другой точке В’ ее. Ток идет теперь из α в β, или – это все равно – из А в В вдоль подвижной проволоки, а затем вдоль неподвижной возвращается из В’ в В , из В в А , наконец, из А в А’. Здесь ток снова остается замкнутым.

Если подобный контур подвергается действию замкнутого тока С , то подвижная часть будет перемещаться, как если бы она находилась под действием некоторой силы. Ампер допускает, что зависящая от С воображаемая сила, которая как бы действует в этом случае на подвижную часть αβ замкнутого тока, будет совершенно такою же, как если бы по αβ проходил незамкнутый ток, выходящий из α и останавливающийся в β, вместо того чтобы совершить замкнутый путь, возвратившись из β в α по неподвижной части контура.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жюль Пуанкаре читать все книги автора по порядку

Жюль Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Жюль Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x