Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Максвелл принимает, что если электрическое поле в диэлектрической среде начинает изменяться, то этот диэлектрик делается ареной особого явления, которое оказывает на гальванометр действие, подобное действию тока, и которое он назвал током смещения .
Если два противоположно заряженных проводника соединяются проволокой, то во время разряда в этой проволоке возникнет незамкнутый ток проводимости; но в это самое время в окружающем диэлектрике возбуждаются токи смещения, которые замыкают этот ток проводимости.
Как известно, теория Максвелла привела к объяснению оптических явлений, основой которых принимаются чрезвычайно быстрые электрические колебания.
В то время подобное воззрение было лишь смелой гипотезой, которая не могла опереться ни на какой опыт. Но к концу второго десятка лет идеи Максвелла получили экспериментальное подтверждение. Герцу удалось осуществить систему электрических колебаний, воспроизводящих все свойства света и отличающихся от световых лишь длиной волны, т. е. тем же, чем фиолетовый свет отличается от красного. В некотором роде Герц произвел синтез света. Каждый знает о беспроволочном телеграфе.
Нам могли бы сказать, что Герц не дал прямого подтверждения основной идеи Максвелла: способности тока смещения действовать на гальванометр. В известном смысле это справедливо; все непосредственно обнаруженное им сводится к тому, что электромагнитная индукция распространяется не мгновенно, как думали прежде, а со скоростью, равной скорости света.
Но предположение, что токов смещения не бывает, а индукция распространяется со скоростью света, равносильно предположению, что явления индукции производятся токами смещения, распространение же индукции происходит мгновенно. Это сразу не очевидно, но это доказывается при помощи анализа, говорить о котором здесь я не имею возможности.
V. Опыты Роуленда. Как я сказал выше, бывает два вида незамкнутых токов проводимости: это, во-первых, разрядные токи в конденсаторе или в любом проводнике; во-вторых, сюда относятся случаи, когда электрические заряды описывают замкнутый путь, перемещаясь в одной части контура посредством электропроводности, а в другой части – путем конвекции.
Для незамкнутых токов первого рода вопрос мог считаться решенным: они «замыкаются» токами смещения. Для токов второго типа решение представлялось еще более простым: если ток был замкнут, то это, казалось, могло происходить исключительно благодаря конвекционному току. Для этого достаточно было допустить, что «конвекционный ток», т. е. движущийся заряженный проводник, может действовать на гальванометр.
Однако опытного доказательства недоставало. На деле представлялось трудным получить достаточную силу тока, даже сколь возможно увеличивая заряды и скорости проводников.
Роуленд, чрезвычайно искусный экспериментатор, первый разрешил эту трудность. Он сообщил диску сильный электростатический заряд и весьма значительную скорость вращения. А статическая магнитная система, помещенная сбоку диска, обнаруживала отклонение. Этот опыт был сделан Роулендом дважды: один раз в Берлине, другой в Балтиморе; затем он был повторен Химстедтом. Оба эти физика считали возможным даже заявить, что им удалось произвести количественные измерения.
В течение двадцати лет этот закон Роуленда все физики признавали как бесспорный. Действительно, всё, по-видимому, его подтверждало. Искра, несомненно, производит магнитное действие, но разве не правдоподобно, что искровой разряд происходит благодаря тому, что от одного из электродов отрываются частицы и вместе с их зарядом переносятся к другому электроду? Не доказывается ли это уже спектром искры, в котором наблюдаются линии, принадлежащие металлу электрода? А в таком случае искра была бы настоящим конвекционным током.
С другой стороны, принимают, что в электролитах электричество переносится движущимися ионами. Следовательно, ток в электролите также был бы конвекционным; действует же он на магнитную стрелку.
То же самое верно для катодных лучей: Крукс рассматривал их как поток весьма тонкой материи, заряженной отрицательным электричеством и несущейся с весьма большой скоростью, иными словами, видел в них конвекционные токи, и этот взгляд в наше время общепринят. Но катодные лучи отклоняются магнитом. По закону действия и противодействия они в свою очередь должны отклонять магнитную стрелку.
Правда, Герц считал, будто ему удалось доказать, что катодные лучи не переносят отрицательного электричества и не действуют на магнитную стрелку. Но Герц ошибался; сначала Перрену удалось собрать электричество, переносимое этими лучами, существование которого Герц отрицал (по-видимому, немецкий ученый был введен в заблуждение действием тогда еще неизвестных Х-лучей); наконец, в самое последнее время с очевидностью было доказано и действие катодных лучей на магнитную стрелку.
Итак, все перечисленные явления, рассматриваемые как конвекционные токи, – искры, токи в электролитах, катодные лучи – одинаково действуют на гальванометр в соответствии с законом Роуленда.
VI. Теория Лоренца. Вскоре пошли еще далее. По теории Лоренца сами токи проводимости представляют настоящие конвекционные токи: электричество находится в постоянной и неразрывной связи с некоторыми материальными частицами, так называемыми электронами; гальванический ток состоит в переносе электронов вдоль проводника; проводники отличаются от изоляторов тем, что первые пропускают сквозь себя электроны, тогда как последние задерживают их движение.
Теория Лоренца очень заманчива; она очень просто истолковывает ряд явлений, которые не могли удовлетворительно объяснить прежние теории, в том числе и теория Максвелла в ее первоначальной форме. К числу этих явлений относятся: аберрация света, частичное увлечение световых волн, магнитная поляризация, явление Зеемана.
Существовали еще некоторые возражения. Явления, происходящие в некоторой системе, казалось, должны были зависеть от абсолютной скорости перемещения центра тяжести этой системы, что противоречит развиваемой нами идее относительности пространства. Липпман, поддерживаемый Кремьё, придал этому возражению наглядную и остроумную форму. Представим себе два заряженных проводника, движущихся поступательно с одной и той же скоростью. Они находятся в относительном покое; однако так как каждый из них равносилен конвекционному току, то они должны притягиваться, а измерив это притяжение, можно было бы определить их абсолютную скорость.
Нет, возражали последователи Лоренца, таким образом была бы измерена не абсолютная скорость их, а скорость их относительно эфира; принцип относительности таким образом не нарушается. Впрочем, впоследствии Лоренц дал ответ, более тонкий и гораздо более удовлетворительный.
Читать дальшеИнтервал:
Закладка: