Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Когда говорил Бертран, он все время находился в движении; то он как будто боролся с каким-то внешним врагом, то движением руки чертил фигуры, которые он изучал. Очевидно, он видел их и хотел изобразить, поэтому он и прибегал к жесту. Что касается Эрмита, то это совершенная противоположность; глаза его как бы избегали соприкосновения с миром; не вне, а внутри искал он образ истины.
Между немецкими геометрами той же эпохи два имени пользуются особенной славой; это имена тех двух ученых, которые основали общую теорию функций, Вейерштрасса и Римана. Вейерштрасс все сводит к рассмотрению рядов и к их аналитическим преобразованиям; можно сказать, он превращает анализ как бы в продолжение арифметики; можно перелистать все его сочинения и не встретить в них ни одного чертежа. Напротив, Риман постоянно прибегает к помощи геометрии; каждая концепция его есть образ, который никто не может позабыть, раз его смысл понят.
Возьмем примеры более свежие. Ли был интуитивистом. При чтении его трудов могли возникнуть сомнения, но все они исчезали после беседы с ним; сейчас же было видно, что он мыслит в образах. Ковалевская была логиком.
У наших студентов мы замечаем те же самые различия; одни больше любят решать задачи «аналитически», другие – «геометрически». Первые не способны «представлять в пространстве», последние скоро утомились бы и запутались бы в длинных вычислениях. Оба рода умов одинаково необходимы для прогресса науки; как логики, так и интуитивисты создали великие вещи, которых не могли бы создать другие. Кто осмелится сказать, что, на его взгляд, было бы лучше, если бы Вейерштрасс никогда не писал, или что он предпочел бы, чтобы Римана не существовало? Итак, и анализ, и синтез играют каждый свою законную роль. Но интересно поближе рассмотреть, какое место в истории науки отводится одному и какое – другому.
Интересная вещь! Если мы перечитаем сочинения древних, у нас явится склонность причислить всех их к интуитивистам. И однако природа всегда остается одной и той же; маловероятно, что она только в нашу эпоху начала создавать расположенные к логике умы.
Если бы мы могли снова вникнуть в ход тех идей, которые господствовали в их время, мы узнали бы, что многие из древних геометров по своему направлению были аналитиками. Например, Евклид воздвиг здание науки, в котором его современники не могли найти недостатка. В этом обширном построении – каждая часть которого все же была обусловлена интуицией – мы можем еще и теперь без особого труда признать творчество логика.
Изменились не умы, а идеи; интуитивные умы остаются все теми же, но их читатели потребовали от них больше уступок.
Какова же причина этой эволюции?
Нетрудно обнаружить ее. Интуиция не может дать нам ни строгости, ни даже достоверности – это замечается все больше и больше.
Приведем несколько примеров. Мы знаем, что существуют непрерывные функции, не имеющие производных. Ничто так не подрывает доверие к интуиции, как эта внушенная нам логикой теорема. Наши отцы не преминули бы сказать: «очевидно, что любая непрерывная функция имеет производную, потому что любая кривая имеет касательную».
Почему же интуиция может обмануть нас в этом случае? А потому, что когда мы стараемся вообразить кривую, мы не можем представить себе ее без толщины; то же самое – когда мы представляем себе прямую, мы видим ее в форме прямолинейной полосы известной ширины. Мы отлично знаем, что эти линии не имеют толщины; мы силимся вообразить их все более и более тонкими и таким образом приблизиться к пределу; до некоторой степени нам это удается, но мы никогда не достигнем этого предела.
Теперь ясно, что мы всегда будем в состоянии представить себе эти две узкие полосы – одну прямолинейную, другую криволинейную – в таком положении, что они будут слегка захватывать друг друга, не пересекаясь.
Таким образом, мы поневоле придем, – если не будем предупреждены строгим анализом, – к заключению, что кривая всегда имеет касательную.
Для другого примера я возьму принцип Дирихле, на котором основано так много теорем математической физики; теперь он доказывается самыми строгими, но очень длинными рассуждениями; напротив, прежде довольствовались одним кратким пояснением. Определенный интеграл, зависящий от произвольной функции, никогда не может обращаться в нуль. Отсюда заключали, что он должен иметь минимум. Недостаток этого рассуждения непосредственно очевиден для нас, потому что мы употребляем абстрактный термин «функция» и потому что мы освоились со всеми особенностями, которые могут иметь функции, когда это слово понимается в самом общем значении.
Но этого бы не было, если бы мы пользовались конкретными образами – если бы, например, смотрели на эту функцию как на электрический потенциал; можно было бы справедливо утверждать, что электростатическое равновесие может быть достигнуто. Однако, может быть, сравнение из физики возбудило бы некоторое смутное недоверие. Но если бы постараться перевести рассуждение на язык геометрии, средний между языком анализа и физики, то этого недоверия, без сомнения, не возникало бы и, таким образом, может быть, можно было бы еще теперь обмануть многих непредубежденных читателей.
Итак, интуиция не дает нам достоверности. Вот почему должна была возникнуть эволюция; теперь посмотрим, как она возникла.
Вскоре заметили, что строгость не могла бы иметь места в рассуждениях, если не ввести ее сначала в определения.
Долгое время предметы, которыми занимаются математики, были по большей части плохо определены; думали, что знают их, потому что представляли себе их при помощи чувств или воображения; но получался только грубый образ, а не ясная идея, на которой можно было бы строить рассуждение.
Вот сюда-то прежде всего логики и должны были направить свои усилия.
Точно то же произошло и для иррационального числа.
Смутная идея непрерывности, которой мы обязаны интуиции, разрешилась в сложную систему неравенств, касающуюся целых чисел.
Благодаря ей трудности при переходе к пределу или при рассмотрении бесконечно малых окончательно устраняются.
Теперь в анализе остаются только целые числа или конечные и бесконечные системы целых чисел, связанных между собой сетью отношений равенства или неравенства.
Математика, как говорят, арифметизировалась.
Прежде всего возникает вопрос: закончилась ли эта эволюция?
Достигли ли мы наконец абсолютной строгости? Ведь на каждой стадии эволюции наши предки также верили в то, что достигли ее. Если они ошибались, то не ошибаемся ли и мы подобно им?
Мы надеемся уже не прибегать в наших рассуждениях к интуиции; философы скажут нам, что это иллюзия. Чистая логика всегда приводила бы нас только к тавтологии; она не могла бы создать ничего нового; сама по себе она не может дать начало никакой науке.
Читать дальшеИнтервал:
Закладка: