Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Очевидно, нет, мы еще не овладеем всецело реальностью; то нечто, что создает единство доказательства, совсем ускользнет от нас.
Чистый анализ предоставляет в наше распоряжение много приемов, гарантируя нам их непогрешимость; он открывает нам тысячу различных путей, которым мы смело можем вверяться; мы уверены, что не встретим там препятствий; но какой из всех этих путей скорее всего приведет нас к цели? Кто скажет нам, какой следует выбрать? Нам нужна способность, которая позволяла бы видеть цель издали, а эта способность есть интуиция. Она необходима для исследователя в выборе пути, она не менее необходима и для того, кто идет по его следам и хочет знать, почему он избрал его.
Если вы присутствуете при шахматной партии, чтобы понять ее, вам недостаточно будет знать правила ходов фигур. Это только позволило бы вам знать, что каждый ход сделан по правилам игры, а это преимущество, конечно, не имело бы большой цены. Однако в таком положении был бы читатель математической книги, если бы он был только логиком. Совсем другое дело – понимать партию; это значит знать, почему игрок выдвигает одну фигуру раньше другой, которую он мог бы подвинуть, не нарушая правил игры. Это значит подметить скрытую мысль, которая делает из этого ряда последовательных ходов нечто вроде организованного целого. Тем более эта способность необходима для самого игрока, т. е. для изобретателя.
Оставим это сравнение и вернемся к математике. Посмотрим, что произошло, например, с идеей непрерывной функции. Вначале это был только чувственный образ, например образ непрерывной черты, проведенной мелом на черной доске. Потом мало-помалу она стала очищаться: скоро воспользовались ею для построения сложной системы неравенств, которая воспроизводила, так сказать, все черты первообраза; когда это построение было окончено, тогда освободили ее от «строительных лесов», отбросив то грубое представление, которое служило ей некоторое время подпорой, а теперь стало бесполезным; не осталось больше ничего, кроме самого построения, безупречного в глазах логика. Однако же если бы первообраз совершенно исчез из нашей памяти, как бы мы угадали, по какой прихоти были построены так, одно за другим, эти неравенства?
Вы найдете, может быть, что я злоупотребляю сравнениями; однако позвольте мне сделать еще одно. Вы, конечно, видели те тонкие соединения кремнистых игл, которые образуют скелет известных губок. Когда органическая материя исчезла, остается только хрупкое, изящное кружево. Правда, тут только кремнезем, но что интересно, так это та форма, которую принял этот кремнезем, и мы не можем понять ее, если мы не знаем живой губки, которая именно и придала ему такую форму. Так, старые интуитивные понятия наших отцов даже тогда, когда мы оставили эти понятия, придают еще форму логическим построениям, которыми мы заменили их.
Этот вид целого необходим для изобретателя; он одинаково необходим и для того, кто хочет действительно понять изобретателя; может ли логика дать нам его?
Нет; названия, которое дают ей математики, было бы достаточно для того, чтобы доказать это. В математике логика называется анализом, анализ же значит разделение, рассечение. Поэтому она не может иметь никакого другого орудия, кроме скальпеля и микроскопа.
Таким образом, логика и интуиция играют каждая свою необходимую роль. Обе они неизбежны. Логика, которая одна может дать достоверность, есть орудие доказательства; интуиция есть орудие изобретательства.
Но едва только я сформулировал этот вывод, как меня охватывает сомнение.
Вначале я различал два рода математических умов: одни – логики и аналитики, другие – интуитивисты и геометры. Но ведь и аналитики также были изобретателями. Имена, которые я привел в начале этой главы, избавляют меня от необходимости настаивать на этом.
Здесь есть какое-то, по крайней мере кажущееся, противоречие, которое необходимо разъяснить.
Прежде всего, думаем ли мы, что эти логики всегда шли от общего к частному, как, казалось бы, побуждали их к этому законы формальной логики? Но так они не могли бы расширить границы науки; научное завоевание можно делать только с помощью обобщения.
В одной из глав «Науки и гипотезы» я имел случай исследовать природу математического умозаключения; я показал, как это умозаключение, не переставая быть безусловно строгим, могло поднимать нас от частного к общему при помощи процесса, который я назвал математической индукцией.
Благодаря этому-то процессу аналитики и двигали вперед науку и если разобраться в самых деталях их доказательств, то можно в любой момент найти его там рядом с классическим силлогизмом Аристотеля.
Итак, мы уже видим, что аналитики – не просто искусные мастера силлогизмов, вроде схоластов.
С другой стороны, можно ли поверить тому, что они всегда шли шаг за шагом, не имея пред своими взорами той цели, которой они хотели достигнуть? Им нужно было угадывать дорогу, которая привела бы их к этой цели, они нуждались в путеводителе.
Этот путеводитель – прежде всего аналогия.
Например, одно из любимых рассуждений аналитиков основано на применении возрастающих функций. Известно, что оно помогло разрешению многих проблем; тогда в чем состоит роль изобретателя, который хочет применить его к новой проблеме? Нужно прежде всего, чтобы он признал аналогию этого вопроса с теми вопросами, которые были уже разрешены с помощью этого метода; потом нужно, чтобы он заметил, чем отличается этот новый вопрос от других, и чтобы он вывел отсюда те видоизменения, которым должен подвергнуться метод.
Но как подметить эти аналогии и различия?
В только что приведенном мною примере они почти всегда очевидны, но я мог бы подыскать другие примеры, где они гораздо более скрыты, и, для того чтобы открыть их, часто требуется незаурядная проницательность.
Чтобы не упустить из виду этих скрытых аналогий, т. е. чтобы иметь возможность изобретения, аналитики должны, без помощи чувств и воображения, иметь непосредственное ощущение того, что создает единство умозаключения, что, так сказать, создает его душу и внутреннюю жизнь.
Когда беседовали с Эрмитом, он никогда не прибегал к чувственному образу, и однако вы скоро заметили бы, что самые абстрактные сущности были для него живыми существами. Он не видел их, но чувствовал, что они не представляют собой искусственного подбора, что у них есть какой-то принцип внутреннего единства.
Но, скажут, здесь опять интуиция. Станем ли мы заключать отсюда, что сделанное вначале различение было только кажущимся, что есть только один род умов и все математики – интуитивисты, по крайней мере те, которые способны изобретать?
Читать дальшеИнтервал:
Закладка: