Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Жюль Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Алгоритм, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теорема века. Мир с точки зрения математики
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Алгоритм
  • Год:
    2020
  • Город:
    М.
  • ISBN:
    978-5-907255-12-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Жюль Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Жюль Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нет, наше различение соответствует некоторой действительности. Выше я сказал, что есть несколько видов интуиции. Я сказал, насколько интуиция чистого числа – та, из которой может вытекать строгая математическая индукция, – отличается от чувственной интуиции, для которой работает воображение в собственном смысле.

Менее ли глубока, чем кажется с первого взгляда, пропасть, которая разделяет их? Окажется ли при внимательном рассмотрении, что эта чистая интуиция сама по себе не может обойтись без помощи чувств? Это дело психолога и метафизика, и я не стану обсуждать этот вопрос. Но довольно и того, что дело подлежит сомнению, чтобы я имел право признавать и утверждать существенное различие между двумя родами интуиции; у них не один и тот же объект и они, по-видимому, пользуются двумя различными способностями нашей души; можно сказать, что это два прожектора, наведенные на два чуждые друг другу мира.

Интуиция чистого числа, интуиция чистых логических форм как раз озаряет и направляет тех, кого мы назвали аналитиками.

Она-то и позволяет им не только доказывать, но еще и изобретать. Через нее-то они и подмечают сразу общий план логического здания, и это – без всякого вмешательства со стороны чувств.

Отказываясь от помощи воображения, которое, как мы видели, не всегда бывает непогрешимо, они могут двигаться вперед, не боясь ошибиться. Счастливы же те, которые могут обойтись без этой поддержки! Мы должны удивляться им; но как они редки!

Итак, среди аналитиков есть изобретатели, но их немного.

Большинство из нас, если бы захотели смотреть вдаль с помощью одной чистой интуиции, тотчас почувствовали бы головокружение. Наша слабость нуждается в более прочной поддержке, и, несмотря на исключения, о которых мы только что говорили, тем не менее верно то, что чувственная интуиция есть самое обыкновенное орудие изобретения в математике. По поводу последних моих размышлений выдвигается вопрос, для которого у меня нет времени ни решить его, ни даже изложить с надлежащими подробностями.

Уместно ли сделать новое разделение и отличать среди аналитиков тех, которые пользуются главным образом этой чистой интуицией, и тех, для которых на первом месте стоит формальная логика?

Например, Эрмит, которого я неоднократно упоминал, не может быть причислен к геометрам, которые применяют чувственную интуицию; но он также и не логик в собственном смысле этого слова. Он не скрывает своего отвращения к чисто дедуктивным процессам, которые исходят от общего и направляются к частному.

Глава II. Измерение времени

I

Пока мы не выходим из области сознания, понятие времени относительно ясно. Мы не только без труда отличаем настоящее ощущение от воспоминания прошлых ощущений или предвидения будущих, но мы вполне знаем, что мы хотим сказать, когда утверждаем, что из двух явлений сознания, которые у нас сохранились в памяти, одно было раньше другого или же что из двух предвидимых явлений сознания одно будет раньше другого.

Когда мы говорим, что два факта сознания одновременны, этим мы хотим сказать, что они глубоко проникают друг друга, так что анализ не может разделить их, не искажая их.

Порядок, в котором мы размещаем явления сознания, не терпит никакого произвола. Он предписан нам, и мы ничего не можем изменить в нем.

Я должен прибавить только одно замечание. Для того чтобы какая-нибудь совокупность ощущений сделалась воспоминанием, которое могло бы быть распределено во времени, нужно, чтобы она перестала быть актуальной, чтобы она утратила для нас значение своей бесконечной сложности, иначе она оставалась бы актуальной. Нужно, чтобы она, так сказать, кристаллизовалась вокруг центра ассоциаций идей, который будет как бы меткой. Только тогда мы можем распределять во времени наши воспоминания, когда они потеряют, таким образом, всякую жизненность, – подобно тому, как ботаник распределяет в своем гербарии цветы, когда они уже высушены. Но число меток может быть только конечным. При учете этого психологическое время было бы прерывным. Откуда же возникает представление, что между двумя некоторыми мгновениями существуют еще и другие мгновения? Мы распределяем наши воспоминания во времени, но мы знаем, что продолжают пребывать и пустые промежутки. Как это могло бы быть, если бы время не было формой, ранее существовавшей в нашем сознании? Как мы узнали бы о наличии пустых промежутков, если возбуждать наше сознание они в состоянии не иначе, как только через свое содержание?

II

Но это не все; мы хотим вложить в эту форму не только явления нашего сознания, но и явления, ареной которых служат другие сознания. Более того, мы хотим вложить в нее физические факты, то, чем мы заселяем пространство, которое ни одно сознание не воспринимает непосредственно. Это необходимо, потому что без этого наука не могла бы существовать. Одним словом, нам дано психологическое время, и мы хотим создать научное и физическое время. Здесь-то и начинается трудность, или скорее трудности, потому что их две.

Вот перед нами два сознания, как два непроницаемые друг для друга мира. По какому праву мы хотим заключить их в одну и ту же форму, измерить их одной и той же мерой? Не похоже ли это на то, что мы хотим мерить длину с помощью грамма или взвесить с помощью метра?

И потом, почему мы говорим об измерении? Мы, может быть, знаем, что такой-то факт предшествует такому-то другому, но не знаем, насколько он предшествует.

Итак, есть две трудности:

Первая. Можем ли мы преобразовать психологическое время, которое есть время качественное, во время количественное?

Вторая. Можем ли мы измерить одной и той же мерой факты, которые совершаются в различных мирах?

III

Первая трудность была замечена уже давно; она была предметом долгих дискуссий, и можно сказать, что этот вопрос разрешен.

Мы не имеем непосредственной интуиции равенства двух промежутков времени. Тот, кто думает, что обладает такой интуицией, обманут иллюзией.

Когда я говорю: от двенадцати часов дня до часа проходит то же время, что и от двух до трех, какой смысл имеет это утверждение?

При малейшем размышлении обнаруживается, что оно само по себе не имеет никакого смысла. Оно получит только тот смысл, какой мне угодно будет ему придать с помощью определения, допускающего конечно, известную степень произвола.

Психологи могли бы обойтись без такого определения; физики, астрономы – не могли бы; посмотрим, как они справились с этим.

Для измерения времени они пользуются маятником и принимают по определению, что все циклы колебаний этого маятника имеют равную длительность. Но это только первое приближение; температура, сопротивление воздуха, барометрическое давление изменяют ход маятника. Если бы мы избавились от этих причин, то добились бы гораздо большего приближения, но все же это было бы только приближение. Новые причины, которыми мы до сих пор пренебрегали, – электрические, магнитные или иные – не замедлили бы внести свои малозаметные возмущения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жюль Пуанкаре читать все книги автора по порядку

Жюль Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Жюль Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x