Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Жюль Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Алгоритм, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теорема века. Мир с точки зрения математики
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Алгоритм
  • Год:
    2020
  • Город:
    М.
  • ISBN:
    978-5-907255-12-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Жюль Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Жюль Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эти философы правы в одном смысле: для того чтобы создать геометрию или какую бы то ни было науку, нужно нечто другое, чем чистая логика.

Для обозначения этого другого у нас нет иного слова, кроме слова «интуиция». Но сколько различных идей скрывается под одним и тем же словом?

Сравним такие четыре аксиомы:

1) Две величины, равные третьей, равны между собой.

2) Если теорема справедлива для 1 и если доказывается, что она справедлива для n + 1, когда справедлива для n , то она будет справедлива для всех целых чисел.

3) Если точка С лежит на прямой между А и В , а точка D между A и С , то точка D будет лежать между А и В .

4) Через одну точку можно провести только одну прямую, параллельную данной прямой.

Все четыре аксиомы должны быть приписаны интуиции, и однако же первая является выражением одного из правил формальной логики; вторая – настоящее синтетическое суждение a priori, это – основание строгой математической индукции; третья есть обращение к воображению; четвертая – скрытое определение.

Интуиция не основывается неизбежно на свидетельстве чувств; чувства скоро оказались бы бессильными; мы не можем, например, представить себе тысячеугольника и однако же интуитивно рассуждаем о многоугольниках вообще, а они включают в себя как частный случай и тысячеугольник.

Вам известно, что подразумевал Понселе под принципом непрерывности. То, что справедливо для действительной величины, говорил Понселе, должно быть справедливо и для мнимой; то, что справедливо для гиперболы, асимптоты которой действительны, должно быть поэтому справедливо и для эллипса, асимптоты которого мнимые.

Понселе был одним из самых интуитивных умов в этом веке; он был страстным интуитивистом и чуть ли не гордился этим; он видел в принципе непрерывности одну из самых смелых своих концепций, и однако этот принцип не покоился на свидетельстве чувств – уподоблять гиперболу эллипсу было скорее противоречием этому свидетельству. Здесь имело место лишь какое-то поспешное инстинктивное обобщение, что, впрочем, я не хочу отстаивать.

Итак, мы имеем несколько родов интуиции; сначала обращение к чувствам и воображению; затем обобщение посредством индукции, так сказать, срисованное с приемов экспериментальных наук; Наконец, мы имеем интуицию чистого числа, ту интуицию, из которой вышла вторая из только что приведенных мною аксиом и которая может дать начало настоящему математическому умозаключению.

Две первые не могут дать достоверности, выше я показал это на примерах; но кто станет серьезно сомневаться относительно третьей, кто станет сомневаться в арифметике?

В новейшем анализе, – если пожелаем взять на себя труд быть строгими, – находят место лишь силлогизмы и обращения к этой интуиции чистого числа, единственной интуиции, которая не может обмануть нас. Можно сказать, что ныне достигнута абсолютная строгость.

IV

Философы приводят еще другое возражение: «То, что вы выигрываете в строгости, – говорят они, – вы теряете в объективности. Вы можете подняться к вашему логическому идеалу, только порвав те связи, которые соединяют вас с реальностью. Ваша наука непогрешима, но она может оставаться такою, только замыкаясь в свою раковину и запрещая себе всякое сношение с внешним миром. При малейшем же применении ей надо выходить оттуда».

Я хочу, например, доказать, что такое-то свойство принадлежит такому-то объекту, понятие которого кажется мне сначала неопределимым, потому что оно интуитивно. Я сначала затрудняюсь или бываю должен удовлетвориться приближенными доказательствами; наконец, я решаюсь дать моему объекту точное определение – то, которое позволяет мне установить это свойство безукоризненным образом.

«Что же после, – говорят философы, – ведь остается еще доказать, что отвечающий этому определению объект есть тот же самый, который открыт вам интуицией; или еще, что такой-то реальный и конкретный объект, сходство которого с вашей интуитивной идеей вы думаете узнать непосредственно, отвечает вашему новому определению. Только тогда вам будет можно утверждать, что он имеет данное свойство. Вы только переместили затруднение».

Это неточно; затруднение не перемещено, оно разделено. Предложение, которое нужно было обосновать, в действительности состояло из двух различных истин, которые не сразу были отличены друг от друга. Первая – математическая истина, и теперь она строго обоснована. Вторая – истина экспериментальная. Только опыт может научить нас, что такой-то реальный, конкретный объект отвечает или не отвечает такому-то абстрактному определению. Эта вторая истина не доказывается математически, но она и не может доказываться, точно так же, как не могут доказываться эмпирические законы физических и естественных наук. Было бы безрассудно требовать большего.

Но разве не большой шаг вперед – различить то, что долгое время неправильно смешивали?

Не значит ли это, что нужно совсем откинуть это возражение философов? Этого я не хочу сказать; сделавшись строгой, математическая наука получает искусственный характер, который поражает всех; она забывает свое историческое происхождение; видно, как вопросы могут разрешаться, но уже не видно больше, как и почему они ставятся.

Это указывает нам на то, что недостаточно одной логики; что наука доказывать не есть еще вся наука и что интуиция должна сохранить свою роль как дополнение – я сказал бы, как противовес или как противоядие логики.

Я уже имел случай указать то место, какое должна иметь интуиция в преподавании математических наук. Без нее молодые умы не могли бы проникнуться пониманием математики; они не научились бы любить ее и увидели бы в ней лишь пустое словопрение; без нее особенно они никогда не сделались бы способными применять ее.

Но теперь я хотел бы говорить прежде всего о роли интуиции в самой науке. Если она полезна для студента, то она еще более полезна для творческого ума ученого.

V

Мы ищем реальность, но что такое реальность?

Физиологи учат нас, что организмы образуются из клеточек; химики прибавляют, что сами клеточки образуются из атомов. Значит ли это, что эти атомы или клеточки составляют реальность или по крайней мере единственную реальность? Тот типичный способ, по которому упорядочиваются эти клеточки и который порождает единство индивидуума, не есть ли также реальность, гораздо более интересная, чем реальность отдельных элементов, и стал ли бы думать какой-нибудь натуралист, что он достаточно знает слона, если бы он всегда изучал это животное только под микроскопом?

Но в математике есть нечто аналогичное. Логик, так сказать, разлагает каждое доказательство на множество элементарных операций; когда рассмотрят одну за другой эти операции и констатируют, что каждая из них правильна, можно ли думать, что понят истинный смысл доказательства? Поймут ли его даже тогда, когда напряжением памяти будут в состоянии повторить это доказательство, воспроизведя все эти элементарные операции в том же порядке, в каком их разместил изобретатель?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жюль Пуанкаре читать все книги автора по порядку

Жюль Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Жюль Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x