Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Тут можно читать онлайн Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент МИФ без БК, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-00100-388-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вторая примечательная стратегия – сочетание математики с физикой, идеального с реальным. В частности, он объединял геометрию, науку о формах, с механикой, изучающей движение и силы. Иногда он использовал геометрию, чтобы пролить свет на механику; иногда ход мыслей бывал обратным – механические соображения рождали идеи для чистых форм. Искусно используя обе стратегии, Архимед смог глубоко проникнуть в тайну кривых.

Поимка числа π

Когда я иду на работу или гуляю вечером с собакой, шагомер в моем iPhone отслеживает пройденное расстояние. Вычисления просты: приложение оценивает длину шага, исходя из моего роста, считает количество сделанных шагов, а затем перемножает эти два числа. Пройденное расстояние равно длине шага, умноженной на количество шагов.

Архимед использовал аналогичную идею для вычисления длины окружности и оценки числа π [52]. Представьте, что окружность – это дорожка для ходьбы. Путь будет выглядеть примерно так:

Каждый шаг представлен коротким отрезком Умножив число шагов на длину одного - фото 14

Каждый шаг представлен коротким отрезком. Умножив число шагов на длину одного отрезка, мы можем оценить длину пути. Конечно, это всего лишь оценка, потому что окружность на самом деле состоит не из прямых отрезков, а из дуг. Заменяя каждую дугу отрезком, мы слегка сокращаем путь. Поэтому такое приближение занижает реальную длину круговой дорожки. Но, по крайней мере теоретически, сделав достаточно большое количество достаточно маленьких шагов, мы можем приблизить длину дорожки с желаемой точностью.

Архимед проделал ряд подобных вычислений, начав с пути из шести шагов, то есть с правильного шестиугольника [53].

Это был удобный базовый лагерь перед штурмом более сложных вычислений - фото 15

Это был удобный базовый лагерь перед штурмом более сложных вычислений. Преимущество шестиугольника в том, что его периметр – сумму длин всех шести сторон – вычислить очень просто. Он в шесть раз больше радиуса круга. Почему? Потому что шестиугольник состоит из шести равносторонних треугольников, длина сторон которых равна радиусу круга.

Шесть сторон таких треугольников образуют периметр шестиугольника.

Получается периметр в шесть раз больше радиуса то есть p 6 r Тогда - фото 16

Получается, периметр в шесть раз больше радиуса, то есть p = 6 r . Тогда, поскольку длина окружности C больше, чем периметр шестиугольника p , должно выполняться C > 6 r .

Это рассуждение дало Архимеду нижнюю границу для числа, которое мы называем пи , обозначаем греческой буквой π и определяем как отношение длины окружности к ее диаметру. Так как диаметр d равен 2 r , то из неравенства C > 6 r следует:

Бесконечная сила Как математический анализ раскрывает тайны вселенной - изображение 17

Таким образом, с помощью шестиугольника можно определить, что π > 3.

Конечно, шесть – это смехотворно малое число шагов, и получившийся шестиугольник – очень грубая карикатура на окружность, но для Архимеда он был всего лишь началом. Выяснив все, что мог дать ему шестиугольник, он уменьшил длину шагов, но увеличил их количество. Он добавил средние точки всех дуг и вместо одного шага стал делать два.

Он как одержимый продолжал делать так снова и снова перейдя от шести шагов к - фото 18

Он, как одержимый, продолжал делать так снова и снова, перейдя от шести шагов к 12, потом к 24, 48 и 96, вычисляя периметр получающихся многоугольников с точностью, вызывающей мигрень.

К сожалению по мере уменьшения длины отрезков стало все труднее вычислять их - фото 19

К сожалению, по мере уменьшения длины отрезков стало все труднее вычислять их длину, поскольку ему приходилось постоянно применять теорему Пифагора, а для этого требовалось находить квадратные корни – чертовски сложная вещь, когда приходится считать вручную. Кроме того, чтобы получить не только оценку снизу, но и сверху, Архимед использовал второй многоугольник – описанный вокруг окружности; его периметр был больше, чем длина окружности.

Я хочу сказать, что вычисление Архимедом числа π было героическим подвигом – и с логической, и с арифметической точки зрения. В итоге, использовав 96-угольник, вписанный в круг, и 96-угольник, описанный около круга, он доказал, что число π больше, чем 3 + 10/71, и меньше, чем 3 + 10/70.

Забудьте на минуту о математике. Просто насладитесь этим результатом на визуальном уровне:

Бесконечная сила Как математический анализ раскрывает тайны вселенной - изображение 20

Неизвестное и вечно непостижимое число π оказалось зажато в тиски между двумя почти одинаковыми числами, отличающимися только знаменателями 70 и 71. Одно из полученных граничных значений – число 3 + 10/70 = 22/7 – стало знаменитым приближением для π, знакомым всем школьникам; к сожалению, многие ошибочно считают его самим числом π.

Метод, который использовал Архимед (он основывается на более ранних работах греческого математика Евдокса), сегодня известен как метод исчерпывания, когда неизвестное число π оказывается зажатым между двумя известными числами. С каждым удвоением границы сближаются, оставляя числу π все меньше места.

Окружности – это простейшие кривые в геометрии. Тем удивительнее, что определение их количественных характеристик выходит за ее рамки. Например, вы не найдете упоминания о числе π в «Началах» Евклида, написанных за одно-два поколения до Архимеда. Вы найдете там доказательство (методом исчерпывания), что отношение площади круга к квадрату его радиуса одинаково для всех кругов, но ни малейшего намека на то, что это универсальное число близко к 3,14. Такое упущение Евклида было сигналом, что тут нужно что-то более глубокое. Чтобы разобраться с числовым значением π, потребовалась новая математика, которая бы могла работать с криволинейными формами. Как измерить длину кривой, площадь криволинейной фигуры или объем криволинейного тела? Эти актуальные вопросы увлекли Архимеда и позволили сделать первые шаги по направлению к тому, что мы сейчас именуем интегральным исчислением. Число π было его первым триумфом.

Дао числа π

Современным умам может показаться странным, что число π не появляется в формуле Архимеда для площади круга, A = rC / 2 и что он никогда не записывал уравнения типа C = π d для выражения длины окружности через диаметр. Он избегал это делать, поскольку π не было для него числом. Это было просто отношение двух длин, длины окружности и ее диаметра. Это была какая-то величина, а не число.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесконечная сила [Как математический анализ раскрывает тайны вселенной] отзывы


Отзывы читателей о книге Бесконечная сила [Как математический анализ раскрывает тайны вселенной], автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x