Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Тут можно читать онлайн Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент МИФ без БК, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-00100-388-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Галилей осознал мощь такого намеренного упрощения реальности за несколько десятилетий до Ферма и Декарта. Он аккуратно менял в своих экспериментах ровно одну вещь, не трогая все остальные. Он позволял шару катиться по наклонной плоскости и измерял, как далеко он продвинется за определенное время. Красиво и просто: расстояние как функция времени. Точно так же Кеплер изучал, сколько времени требуется планете для оборота вокруг Солнца, он связал этот период со средним расстоянием от светила. Одна переменная сравнивается с другой, период – с расстоянием. Это был путь к прогрессу и способ прочитать великую книгу природы.

В предыдущих главах мы уже встречались с примерами функций, Когда мы говорили о хлебе с корицей и изюмом, x было количеством съеденных ломтиков, а y – количеством потребленных калорий. В этом случае взаимосвязь выражалась уравнением y = 200 x , что дает на координатной плоскости прямую линию. Еще один пример – изменение продолжительности дня в Нью-Йорке в 2018 году в зависимости от времени года. Там переменная x означала день года, а переменная y – количество минут светового дня, то есть время от восхода до захода солнца. Мы установили, что график в этом случае колеблется, словно синусоида: с самыми длинными днями летом и самыми короткими – зимой.

Функция функций

Некоторые функции настолько важны, что на инженерном калькуляторе для них отведены отдельные кнопки. Среди таких математических знаменитостей – x 2, lg x или 10 x . Следует признать, что большинству людей они не нужны. Отсчитать сдачу или определить размер чаевых вполне можно и без них. В повседневной жизни арифметики обычно вполне достаточно. Вот почему, когда вы включаете на телефоне приложение «Калькулятор», вам по умолчанию показывают базовый вариант с цифрами от 0 до 9, четырьмя арифметическими операциями – сложением, вычитанием, умножением и делением – и кнопкой для процентов. Этого хватает для ведения дел большинству из нас.

Однако для технических профессий числа – это только начало. Ученым, инженерам, финансовым аналитикам, медицинским исследователям приходится работать с отношениями между числовыми величинами, которые показывают, как одна величина влияет на другую. Для описания подобных взаимосвязей и необходимы функции. Они предоставляют инструменты, которые нужны для моделирования движения и изменения.

Вообще говоря, вещи могут меняться одним из трех способов: увеличиваться, уменьшаться или с ними может происходить и то и другое. Иными словами, они могут расти, снижаться или колебаться. Для разных случаев подходят разные функции. Поскольку на следующих страницах мы встретимся с различными функциями, имеет смысл вспомнить некоторые самые полезные из них.

Степенные функции

Для количественного выражения роста часто используются степенные функции, например x 2или x 3, где переменная x возводится в какую-нибудь степень.

Простейшая из таких функций – линейная, когда зависимая переменная y растет прямо пропорционально x . Например, если y – количество калорий, потребленных при съедании 1, 2 или 3 ломтиков хлеба с изюмом и корицей, то y растет в соответствии с уравнением y = 200 x , где x – это число ломтиков, а 200 – количество калорий, приходящееся на каждый ломтик. Однако в данном случае отдельная кнопка x на калькуляторе не понадобится; мы просто умножаем 200 на количество ломтиков и получаем количество калорий.

А вот для следующей по иерархии степени роста (квадратичный рост) наличие отдельной кнопки x 2будет весьма полезным. Квадратичный рост интуитивно не так понятен, как линейный. Например, если мы опять изменяем x с 1 до 2 и 3 и задаемся вопросом, как меняются соответствующие значения y = x 2, то видим, что они проходят значения 1 2 = 1, 2 2 = 4, 3 2 = 9. Поэтому значения y прирастают все быстрее: сначала Δ y = 4–1 = 3, потом Δ y = 9–4 = 5. Если продолжать, будут появляться последующие нечетные числа: 7, 9, 11 и так далее. Таким образом, при квадратичном росте с увеличением x растет не только значение функции, но и само изменение значений. Сам рост растет быстрее.

Мы уже сталкивались с этой любопытной закономерностью в экспериментах Галилея с наклонной плоскостью, в которых он измерял время качения шаров. Он заметил, что, когда шар выходил из состояния покоя, он катился со временем все быстрее и с каждым последующим приращением времени проходил все большее расстояние, причем последовательно пройденные расстояния возрастали пропорционально нечетным числам 1, 3, 5 и так далее. Галилей пришел к выводу, что эта загадочная закономерность означает следующее: общее расстояние, пройденное шаром, пропорционально не времени, а квадрату времени. Таким образом, квадратичная функция x 2возникла при изучении движения весьма естественно.

Показательные функции

В отличие от умеренно растущей степенной функции x или x 2, показательная (или экспоненциальная) функция, например 2 x или 10 x , описывает гораздо более взрывной вид роста, который увеличивается подобно снежному кому и подпитывает сам себя. При экспоненциальном росте на каждом шаге происходит не прибавление постоянной величины, как при линейном росте, а умножение на постоянный коэффициент.

Например, численность популяции бактерий, живущей в чашке Петри, удваивается каждые 20 минут. Если вначале было 1000 бактерий, то через 20 минут их станет 2000. Еще через 20 минут – 4000, а через последующие такие же 20-минутные интервалы – 8000, 16 000, 32 000 и так далее. В этом примере в игру вступает показательная функция 2 x . В частности, если мы измеряем время в 20-минутных интервалах, то в чашке после x единиц времени будет 1000 × 2 x бактерий. Подобный экспоненциальный рост характерен для многих быстрых процессов – от размножения настоящих вирусов до вирусного распространения информации в социальной сети.

Экспоненциальный рост также имеет отношение к увеличению денежных средств. Представьте себе сумму в 100 долларов, лежащую на банковском счете, при этом годовая ставка составляет 1 процент. Через год на счету будет 100 × 1,01 = 101 доллар. Через два года – 101 × 1,01 = 102,01. Через x лет на счете будет лежать 100 × 1,01 x долларов.

У показательных функций вроде 2 x или 1,01 x числа 2 или 1,01 называются основаниями. Чаще всего используется основание 10. Никаких математических причин выбора именно этого числа не существует. Его распространение обусловлено случайностью биологической эволюции: у нас оказалось 10 пальцев. Соответственно, и десятичная система в нашей арифметике основана на степенях числа 10.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесконечная сила [Как математический анализ раскрывает тайны вселенной] отзывы


Отзывы читателей о книге Бесконечная сила [Как математический анализ раскрывает тайны вселенной], автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x