Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

> restart: with(PDEtools):

> PDE := x*diff(f(x, y), y) - diff(f(x,y),x)=f(x,y;^2*g(x)/h(y);

ans pdsolvePDE PDE SxydiffSxyyx - фото 900

> ans := pdsolve(PDE);

PDE SxydiffSxyyx diffSxyxdiffSxyy 1 - фото 901

> PDE := S(x,y)*diff(S(x,y),y,x) + diff(S(x,y),x)*diff(S(x,y),y) = 1;

struc pdsolvePDE HINTfxgy buildstruc - фото 902

> struc := pdsolve(PDE, HINT=f(x)*g(y));

buildstruc pdsolvePDEHINTPxy12 PDE - фото 903

> build(struc);

pdsolvePDEHINTPxy12 PDE difffxyz x - фото 904

> pdsolve(PDE,HINT=P(x,y)^(1/2));

PDE difffxyz x difffxyz у2 fxyzz - фото 905

> PDE := diff(f(x,y,z), x) + diff(f(x,y,z), у)^2 = f(x,y,z)+z;

pdsolvePDE HINTstrip myPDEsystem ydifffxуztx - фото 906

> pdsolve(PDE, HINT=strip);

myPDEsystem ydifffxуztx z2difffxyztz - фото 907

> myPDEsystem := [-y*diff(f(x,у,z,t),x) +

z^2*diff(f(x,y,z,t),z) + 3*t*z*diff(f(x,y,z,t),t) - 3*t^2-4*f(x,y,z,t)*z = 0,

-y*diff(f(x, y, z, t), y) - z*diff(f(x,y,z,t),z) -

t*diff(f(x,y,z,t), t) + f(x,y,z,t) = 0,

-x*diff(f(x, y, z, t), y) - diff(f(x,y,z,t),z)=0]:

for _eq in myPDEsystem do

_eq;

od;

sol pdsolvemyPDEsystem Обратите внимание на то что в последнем - фото 908

> sol := pdsolve(myPDEsystem);

Обратите внимание на то что в последнем примере из справки решена система - фото 909

Обратите внимание на то, что в последнем примере из справки решена система дифференциальных уравнений в частных производных.

7.8.4. Функция PDEplot пакета DEtools

Одна из важнейших функций пакета DEtools — DEtools[PDEplot] — служит для построения графиков решения систем с квазилинейными дифференциальными уравнениями первого порядка в частных производных. Эта функция используется в следующем виде:

PCEplot(pdiffeq, var, i_curve, srange, o)

PDEplot(pdrffeq, var, i_curve, srange, xrange, yrange, urange, o)

Здесь помимо упоминавшихся ранее параметров используются следующие: pdiffeq — квазилинейные дифференциальные уравнения первого порядка (PDE), vars — независимая переменная и i_curve — начальные условия для параметрических кривых трехмерной поверхности. Помимо опций, указанных для функции DEplot, здесь могут использоваться следующие опции:

• animate = true, false — включение (true) или выключение (false) режима анимации графиков;

• basechar = true, false, ONLY — устанавливает показ начального условия на плоскости (х,у);

• basecolor = b_color — устанавливает цвет базовых характеристик;

• ic_assumptions — задание (в виде равенств или неравенств) ограничений на начальные условия для первых производных;

• initcolor = i_color — инициализация цвета кривой начальных условий;

• numchar = integer — залает число отрезков кривых, которое не должно быть меньше 4 (по умолчанию 20);

• numsteps = [integer1, integer2] — задает число шагов интегрирования (по умолчанию [10,10]);

• obsrange = true, false — прекращение интегрирования (true) при выходе отображаемой переменной за заданные пределы или продолжение интегрирования (false) в любом случае;

• scene=[x,y,u(x,y)] — вывод обозначений координатных осей.

С помощью параметров и опций можно задать множество возможностей для наглядной визуализации довольно сложных решений систем дифференциальных уравнений с частными производными. Следует отметить, что неправильное задание параметров ведет просто к выводу функции в строке вывода без построения графиков и нередко без сообщений об ошибках. Поэтому полезно внимательно просмотреть примеры применения этой функции — как приведенные ниже, так и в справке.

7.8.5. Примеры применения функции PDEplot

Рисунок 7.28 демонстрирует применение функции PDEplot. Этот пример из справки показывает, насколько необычным может быть решение даже простой системы дифференциальных уравнений в частных производных.

Рис 7 28 Пример применения функции PDEplot В данном случае решение - фото 910

Рис. 7 28. Пример применения функции PDEplot

В данном случае решение представлено трехмерной фигурой весьма нерегулярного вида.

Другой пример использования функции PDEplot показан на рис. 7.29. Он иллюстрирует комбинированное построение графиков решения разного типа с применением функциональной закраски, реализуемой по заданной формуле с помощью опции initcolor.

Рис 729 Построение комбинированного графика с помощью функции PDEplot Еще - фото 911

Рис. 7.29. Построение комбинированного графика с помощью функции PDEplot

Еще раз отметим, что, к сожалению, рисунки в данной книге не дают представления о цвете выводимых системой Maple графиков. Поэтому наглядность решений, видимых на экране монитора, существенно выше.

7.9. Сложные колебания в нелинейных системах и средах

7.9.1. Пример нелинейной системы и моделирование колебаний в ней

Многие системы (например, нелинейные оптические резонаторы, лазерные устройства и др.) описываются системами из более чем двух нелинейных дифференциальных уравнений. Колебания в таких системах нередко носят сложный нестационарный, а порою даже хаотический характер. Примером этого может служить анализ переходных процессов в системе, описываемой тремя дифференциальными уравнениями и представленной на рис. 7.30.

Рис 730 Пример решения системы из трех нелинейных дифференциальных - фото 912

Рис. 7.30. Пример решения системы из трех нелинейных дифференциальных уравнений, создающей колебания сложной формы

Поведение системы описывается тремя постоянными sigma, b и r, меняя которые можно получить самый различный вид временных зависимостей x(t), y(t) и z(t). Даже на ограниченном промежутке времени эти зависимости имеют весьма сложный и почти непредсказуемый характер и далеки от периодических колебаний. Нередко в них проглядывает фрактальный характер.

7.9.2. Фазовый портрет на плоскости

Функция odeplot позволяет получать не только графики временных зависимостей, но и фазовые портреты колебаний. Рисунок 7.31 показывает построение фазового портрета в плоскости (x, y).

Рис 731 Фазовый портрет колебаний на плоскости х у Нетрудно заметить - фото 913

Рис. 7.31. Фазовый портрет колебаний на плоскости (х, у)

Нетрудно заметить, что фазовый портрет отчетливо выделяет два фокуса, которые соответствуют слабым осцилляциям нарастающих почти гармонических колебаний, время от времени повторяющимся. В целом же фазовый портрет колебаний оказывается довольно запутанным и хорошо иллюстрирует развитие нестационарных компонент колебаний.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x