Генри Дьюдени - Пятьсот двадцать головоломок

Тут можно читать онлайн Генри Дьюдени - Пятьсот двадцать головоломок - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1975. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Пятьсот двадцать головоломок
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1975
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Генри Дьюдени - Пятьсот двадцать головоломок краткое содержание

Пятьсот двадцать головоломок - описание и краткое содержание, автор Генри Дьюдени, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.

В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.

Книга доставит удовольствие всем любителям занимательной математики.

Пятьсот двадцать головоломок - читать онлайн бесплатно полную версию (весь текст целиком)

Пятьсот двадцать головоломок - читать книгу онлайн бесплатно, автор Генри Дьюдени
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сообщите теперь мне, сколько у вас получилось стопок и сколько карт вы отложили в сторону, и я тотчас же сообщу вам сумму значений нижних карт во всех стопках. Для этого я просто умножу на 13 число стопок, уменьшенное на 4, и прибавлю число отложенных в сторону карт. Например, если окажется 6 стопок и 5 лишних карт, то 13, умноженное на 2 (6 минус 4), плюс 5 равно 31, сумме нижних карт.

Почему так получается?

182. Драчливые дети.Один человек женился на вдове, и у каждого из них были дети от первого брака. Через 10 лет разыгралась битва, в которой приняли участие все дети (к тому времени их стало 12). Мать прибежала к отцу с криком:

— Иди скорее! Твои и мои дети бьют наших детей!

У каждого теперь было по 9 собственных детей.

Сколько детей родилось за эти 10 лет?

183. Дележ яблок.Пока Крэкхэмы заправляли свой автомобиль в одной живописной деревушке, 8 детей, направлявшихся в школу, остановились и стали наблюдать за ними. В корзине у детей было 32 яблока, которые они собирались продать. Тетушка Гертруда по доброте душевной купила все яблоки и сказала, что дети могут разделить их между собой.

Дора спросила у каждого, как его зовут, и вечером того же дня сказала (правда, кое-что усложнив): «Энн получила 1 яблоко, Мэри 2, Джейн 3 и Кэт 4. Нед Смит получил столько же яблок, сколько и его сестра, Том Браун получил яблок в 2 раза больше своей сестры, Бил Джонс — в 3 раза больше своей сестры и Джек Робинсон — в 4 раза больше своей сестры».

Ну-ка, кто из вас сумеет назвать фамилию каждой девочки?

184. Покупая резинку.Вот головоломка, которая по виду весьма напоминает некоторые старые головоломки, но требует совершенно иного подхода. Автор ее не известен.

Четыре матери (каждая со своей дочерью) пошли в магазин купить резинку. Каждая мать купила в 2 раза больше метров резинки, чем ее дочь, и каждая из них купила столько метров, сколько центов она платила за метр. Миссис Джонс истратила на 76 центов больше, чем миссис Уайт; Нора купила на 3 метра меньше резинки, чем миссис Браун; Глэдис купила на 2 метра больше резинки, чем Хильда, которая истратила на 48 центов меньше, чем миссис Смит.

Как зовут мать Мэри?

185. Квадраты и треугольные числа.Какое третье по величине число (наименьшее число считается первым) является одновременно и треугольным числом [12] Треугольными называются числа, равные сумме первых п чисел натурального ряда. Название связано с тем, что если изобразить каждую единицу кружочком, те треугольное число можно изобразить в виде треугольника, составленного из таких кружочков (в первой строке стоит один кружочек, во второй два, в третьей — три и т. д.). — Прим. перев. , и квадратом? Разумеется, первые два числа, обладающие указанным свойством, — это 1 и 36. Чему равно следующее число?

186. Точные квадраты.Найдите четыре числа, сумма каждой пары которых и сумма которых представляли бы собой точные квадраты.

187. Элементарная арифметика.Вот один вопрос, похожий на те, что были так популярны в Венеции (да и не только в ней) в середине XVI в. Своим появлением они во многом были обязаны Николе Фонтана, больше известному под именем Тарталья (заика).

Если бы четверть от двадцати равнялась четырем, то чему равнялась бы треть от десяти?

188. Перестановка цифр.Если мы хотим умножить 571 428 на 5 и разделить на 4, то для этого нам нужно лишь переставить 5 из начала в конец: число 714 285 дает верный ответ.

Не сумели бы вы найти число, которое можно было бы умножить на 4 и разделить затем на 5 столь же просто: переставив первую цифру в конец?

Разумеется, если бы разрешалось переставлять цифру из конца в начало, то 714 285 подошло бы и на этот раз. Однако цифру следует переставлять именно из начала в конец.

189. Странное сложение.Однажды во время завтрака полковник Крэкхэм попросил юных членов своей семьи написать 5 нечетных цифр, которые в сумме давали бы 14. Сделать это смог лишь один из них.

190. Шесть простых вопросов.

1) Вычтите четыре тысячи одиннадцать сотен с половиной из двенадцати тысяч двенадцати сотен двенадцати.

2) Добавьте 3 к 182 так, чтобы результат получился меньше 20.

3) Какие 2 числа в произведении дают 7?

4) Какие 3 цифры при умножении на 5 дают 6?

5) Если бы четырежды пять равнялось 33, то чему равнялась бы четверть от 20?

6) Найдите дробь, у которой числитель был бы меньше знаменателя и это свойство сохранялось бы при перевертывании дроби.

191. Три пастуха.Когда Крэкхэмы подъезжали к одному большому городу, им пришлось остановиться, потому что по дороге двигалось стадо овец, за ним — стадо быков, а следом пастухи гнали табун лошадей. Крэкхэмы поняли, что в городе сегодня базарный день. Джордж, воспользовавшись случаем, придумал следующую головоломку.

Три пастуха, гнавших свои стада, встретились на большой дороге. Джек и говорит. Джиму:

— Если я дам тебе 6 свиней за одну лошадь, то в твоем стаде будет вдвое больше голов, чем в моем.

А Дан заметил Джеку:

— Если я дам тебе 14 овец за одну лошадь, то у тебя в стаде будет втрое больше голов, чем у меня.

Джим в свою очередь сказал Дану:

— А если я дам тебе 4 коровы за лошадь, то твое стадо станет в 6 раз больше моего.

Сделки не состоялись, но не могли бы вы все же сказать, сколько голов скота было в трех стадах?

192. Пропорциональное представительство.Когда Крэкхэмы остановились в Манглтоне- на-Блисе, то застали жителей этого городка взбудораженными в связи с местными выборами. Выборы проходили по принципу пропорционального представительства. Каждому избирателю давался бюллетень с 10 именами кандидатов. Избиратель должен был поставить N 1 против кандидата, за которого отдавал свой первый голос, N 2 против того, за которого он отдавал второй голос, и т. д. до десятого включительно.

Избиратели должны были ставить «галочку» против N 1, против других номеров «галочки» можно было ставить или нет по желанию. Джордж предложил остальным членам семьи узнать, сколькими различными способами может избиратель расставить «галочки» в своем бюллетене.

193. Вопрос относительно кубов.Профессор Рэкбрейн однажды утром заметил, что кубы последовательных чисел, начиная с 1, могут в сумме давать полный квадрат. Так, сумма кубов 1, 2, 3 (то есть 1 + 8 + 27) равна 36, или 6 2. Профессор утверждал, что если брать последовательные числа, начиная не с 1, то наименьшими числами, сумма кубов которых равна квадрату некоторого числа, будут 23, 24 и 25 (23 3+ 24 3+ 25 3= 204 2). Профессор Рэкбрейн предложил найти два наименьших набора последовательных чисел, начинающихся не с 1 и состоящих более чем из трех чисел, сумма кубов которых также равна квадрату некоторого натурального числа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генри Дьюдени читать все книги автора по порядку

Генри Дьюдени - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Пятьсот двадцать головоломок отзывы


Отзывы читателей о книге Пятьсот двадцать головоломок, автор: Генри Дьюдени. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x