Генри Дьюдени - Пятьсот двадцать головоломок

Тут можно читать онлайн Генри Дьюдени - Пятьсот двадцать головоломок - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1975. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Пятьсот двадцать головоломок
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1975
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Генри Дьюдени - Пятьсот двадцать головоломок краткое содержание

Пятьсот двадцать головоломок - описание и краткое содержание, автор Генри Дьюдени, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.

В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.

Книга доставит удовольствие всем любителям занимательной математики.

Пятьсот двадцать головоломок - читать онлайн бесплатно полную версию (весь текст целиком)

Пятьсот двадцать головоломок - читать книгу онлайн бесплатно, автор Генри Дьюдени
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

194. Два куба.«Не могли бы вы найти, — спросил профессор Рэкбрейн, — два последовательных куба, разность между которыми была бы полным квадратом? Например, 3 3= 27, а 2 3= 8, но их разность (19) не является полным квадратом».

Каково наименьшее возможное решение?

195. Разность кубов.Число 1 234 567 можно представить в виде разности квадратов, стоит только выписать два числа, 617 284 и 617 283 (половина данного числа плюс ½ и минус ½ соответственно), и взять разность их квадратов [13] 2 - 2 ≡ a . — Прим. перев. . Найти же два куба, разность которых равнялась бы 1 234 567, несколько труднее.

196. Составные квадраты.Можете ли вы найти два трехзначных квадрата (без нулей), которые, будучи выписанными подряд, образуют шестизначное число, в свою очередь представляющее собой квадрат? Например, из 324 и 900 (18 2и 30 2) получается 324 900 (570 2), но число 900 содержит два нуля, что запрещено условием.

Задача имеет лишь одно решение.

197. Квадраты в арифметической прогрессии.Как-то утром профессор Рэкбрейн предложил своим молодым друзьям найти три целых числа, образующих арифметическую прогрессию, при этом сумма любых двух из этих трех чисел должна представлять собой квадрат.

198. Дополнение до квадрата.«Какое число, — спросил полковник Крэкхэм, — обладает тем свойством, что если его прибавить к числам 100 и 164 в отдельности, то каждый раз получатся точные квадраты?»

199. Каре.«Один офицер построил своих солдат в каре, — сказала Дора Крэкхэм, — при этом 30 человек у него оказались лишними. Тогда он решил увеличить сторону квадрата на одного человека, но в этом случае ему 50 человек не хватило.

Сколько солдат было у офицера?»

200. Квадраты и кубы.Найдите два различных числа, сумма квадратов которых была бы кубом, а сумма кубов — квадратом.

201. Молоко и сливки.Профессор Рэкбрейн, отведав за завтраком сливок, задал следующий вопрос:

— Честный молочник обнаружил, что в молоке, которое дает его корова, содержится 5% сливок и 95% снятого молока.

Сколько снятого молока он должен добавить в каждый литр цельного молока, чтобы снизить содержание сливок до 4%?

202. Орехи для обезьян.Один человек принес к вольере с обезьянами мешок орехов. Оказалось, что если бы он поделил эти орехи поровну между 11 обезьянами в первой клетке, то остался бы лишний орех, если бы он поделил их между 13 обезьянами во второй клетке, то осталось бы 8 орехов и, наконец, если бы он поделил их между 17 обезьянами в последней клетке, то осталось бы 3 ореха.

Выяснилось также, что если бы он поделил орехи поровну между 41 обезьяной во всех трех клетках или между обезьянами в любых двух клетках, то в любом из этих случаев оставался бы излишек орехов.

Какое наименьшее число орехов могло быть в мешке?

203. Дележ яблок.Однажды утром Дора Крэкхэм спросила у брата:

— Если у трех мальчиков есть 169 яблок, которые они должны разделить между собой в отношении 1 : 2, 1 : 3 и 1 : 4, то сколько яблок достанется каждому из них?

204. Колка дров.Однажды за завтраком полковник Крэкхэм сказал, что двое знакомых ему рабочих могут за день напилить 5 кубометров дров. Наколоть же пиленых дров они могут за день 8 кубометров. Полковнику хотелось бы знать, сколько кубометров дров нужно напилить рабочим, чтобы за остаток дня успеть их наколоть.

205. Пакеты с орехами.Джордж Крэкхэм положил за завтраком на стол 5 бумажных пакетов. Когда его спросили, что в них такое, он ответил:

— Я положил в эти пять пакетов сто орехов. В первом и втором пакетах 52 ореха, во втором и третьем — 43, в третьем и четвертом — 34; в четвертом и пятом — 30. Сколько орехов в каждом пакете?

206. Распределение орехов.Тетушка Марта купила орехов. Томми она дала один орех и четверть оставшихся, и Бесси получила один орех и четверть оставшихся, Боб тоже получил один орех и четверть оставшихся, и, наконец, Джесси получила один орех и четверть оставшихся. Оказалось, что мальчики получили на 100 орехов больше, чем девочки.

Сколько орехов тетушка Марта оставила себе?

207. Юные разбойники.Три юных «разбойника с большой дороги», возвращаясь из кино, встретили торговку с яблоками. Том схватил половину всех яблок, но 10 бросил обратно в корзину. Бен взял треть оставшихся, но вернул назад 2 яблока, которые ему не понравились. Джим взял половину оставшихся яблок, но кинул назад одно червивое. У торговки в корзине осталось только 12 яблок.

Сколько яблок было у торговки до налета?

208. Бисквиты.Один торговец упаковал свои бисквиты (все одинакового качества) в коробки по 16, 17, 23, 39 и 40 фунтов соответственно и не желал продавать их иначе, как целыми коробками. Покупатель попросил его отпустить 100 фунтов бисквитов.

Не могли бы вы выполнить этот заказ? Если нет, то насколько близко сможете вы подобраться к цифре 100? Разумеется, у торговца достаточно коробок каждого веса.

209. Трое рабочих.

— Мы с Билом, — сказал Кейзи, — можем выполнить для вас эту работу за 10 дней, а если вместо Била будет Алек, то мы справимся и за 9 дней.

— А еще лучше, — сказал Алек, — дайте мне в помощь Била, и мы сделаем вашу работу за 8 дней.

Сколько времени потребуется каждому рабочему для того, чтобы выполнить эту работу в одиночку?

210. Работая в одиночку.Альфред и Бил вместе могут выполнить некоторую работу за 24 дня. Если Альфред может сделать только ⅔ того, что делает Бил, то за сколько дней каждый из них выполнит ту же работу в одиночку?

211. «Бумеранг».Я называю «бумерангом» один из самых древних видов арифметических головоломок. Кого-нибудь просят загадать число и после ряда вычислений сказать результат. Услышав результат, тот, кто задавал вопрос, немедленно сообщает задуманное число. Существуют согни различных вариантов этой головоломки.

Самый старый из зафиксированных письменно примеров этой головоломки встречается, по-видимому, в «Арифметике» Никомаха, который умер около 120 г. Он просит вас задумать любое целое число от 1 до 100 и затем разделить его последовательно на 3, 5 и 7, сообщая каждый раз остаток. Получив эти сведения, он немедленно отгадывает задуманное вами число.

Не смог бы читатель придумать простой способ, позволяющий в уме совершить этот подвиг? Если нет, то, может быть, ему будет интересно узнать, как это делал древний математик.

212. Пчелы Лонгфелло.Когда Лонгфелло был профессором новых языков в Гарвардском колледже, он часто развлекался, задавая своим студентам более или менее простые арифметические головоломки. Вот одна из них.

Если ⅕ пчелиного роя полетела на цветы ладамбы, ⅓ — на цветы слэндбары, утроенная разность между этими числами полетела на дерево, а одна пчела продолжала летать между ароматными кетаки и малати, то сколько всего было пчел?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генри Дьюдени читать все книги автора по порядку

Генри Дьюдени - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Пятьсот двадцать головоломок отзывы


Отзывы читателей о книге Пятьсот двадцать головоломок, автор: Генри Дьюдени. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x