Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Название:Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:Москва
- ISBN:978-500057-008-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.
Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Мы также знаем, что
c = d + e ,
поскольку построенный перпендикуляр делит гипотенузу c на два меньших отрезка d и e .
В этот момент не стыдно немного растеряться или просто не знать, что делать дальше. Мы в трясине из пяти представленных выше равенств и пытаемся привести их к равенству
a 2+ b 2= c 2.
Попробуйте сделать это за несколько минут. Вы обнаружите, что два равенства излишни. Следовательно, это неэлегантное доказательство. В изящном доказательстве не должно быть ничего лишнего. Конечно, все крепки задним умом, но ведь сначала мы ничего не знали об этих равенствах. Что, впрочем, не делает нашу мину при плохой игре лучше.
Тем не менее, манипулируя тремя «нелишними» равенствами, можно вывести требуемое соотношение. (См. пропущенные шаги доказательства в примечании [60] Вот рассуждения, пропущенные во втором доказательстве. Возьмем равенство a/d = c/a и преобразуем его в d = a 2 /c . Аналогично преобразуя другое равенство, получим e = b 2 /c . Наконец, подставив выражения для d и e в равенство c = d + e , получим c = a 2 /c + b 2 /c . Теперь умножим обе части последнего равенства на c и выведем искомую формулу c 2 = a 2 + b 2 .
в конце книги.)
Согласны ли вы с тем, что с эстетической точки зрения этот вариант уступает первому? Конечно, он приводит к доказательству. Но кто пригласил на вечеринку всю эту алгебру? Ведь это геометрическая теорема.
Однако более серьезный недостаток последнего доказательства — непрозрачность. К тому времени, когда вы закончите упорно продираться сквозь его дебри, может быть, скрепя сердце вы и поверите в верность теоремы, но все еще в этом не убедитесь .
Но оставим в стороне доказательства. Что вообще дает теорема Пифагора? Она выявляет фундаментальную истину о природе пространства, показывая, что оно плоское, а не изогнутое. Например, для поверхности шара или тора (фигура, похожая на бублик) подобную теорему придется изменить. Эйнштейн столкнулся с этим в своей общей теории относительности (где гравитация рассматривается не как сила, а как проявление искривления пространства), как и Георг Риман [61] Георг Риман (1826–1866) — немецкий математик. Внес огромный вклад сразу в несколько разделов математической науки. Положил начало геометрическому направлению в теории аналитических функций, вместе с Огюстеном Коши сформулировал теорию интегралов. Развил комплексный анализ и теорию чисел. Прим. перев.
и другие ученые в условиях, когда только закладывались основы неевклидовой геометрии.
От Пифагора до Эйнштейна пролегла долгая дорога. Но по крайней мере она прямая — свою б о льшую часть.
13. Кое-что из ничего
Любой курс математики содержит хотя бы одну заведомо трудную тему. В арифметике это деление в столбик. В алгебре — текстовые задачи. А в геометрии — доказательства.
Большинство учеников, изучающих геометрию, до этого никогда не сталкивались с доказательствами. И такая встреча может вызвать шок, поэтому здесь был бы уместен ярлычок со следующей надписью : «Доказательства способны вызвать головокружение или чрезмерную сонливость. Побочные эффекты от длительного воздействия доказательств могут включать в себя ночную потливость, приступы паники и в редких случаях эйфорию. Прежде чем приступать к их изучению, проконсультируйтесь с врачом».
Умение приводить доказательства уже давно считается одним из ключевых для общего образования. И, по мнению некоторых, более существенным, чем сама геометрия. Хотя никто толком не понимает, как научиться их формулировать. Согласно этой точке зрения, геометрия хороша для развития умственных способностей, поскольку обучает нас думать четко и логично. Сюда не относится изучение треугольника, круга и параллельных линий как таковых. Важно само применение аксиоматического метода, представляющего собой процесс пошагового создания строгих аргументов до получения подтверждения искомого вывода.
Евклид [62] Все 13 книг Elements в одном удобном томе с большим количеством иллюстраций: Euclid’s Elements, edited by D. Densmore, (Green Lion Press, 2002). Еще один отличный перевод в формате PDF: http://farside.ph.utexas.edu/euclid.html. Прим. ред.: В английской традиции книги Евклида называются Elements («Элементы»), в отличие от русской традиции, где книги Евклида имеют название «Начала». Русское полное издание «Начал» Евклида: Начала Евклида. Пер. и комм. Д. Д. Мордухай-Болтовского при ред. участии И. Н. Веселовского и М. Я. Выгодского. В 3 т. (Серия «Классики естествознания»). М.: ГТТИ, 1948–50.
установил этот дедуктивный подход в своих «Началах» (в настоящее время наиболее часто перепечатываемый учебник всех времен) около 2300 лет назад. С тех пор евклидова геометрия стала моделью логического мышления во всех сферах жизни — от науки и философии до права и политики. Например, Исаак Ньютон применил метод Евклида в структуре своего шедевра «Математические начала натуральной философии». Используя геометрические доказательства, он вывел законы Галилея и Кеплера о движении летящих предметов и планет на основе их собственных глубинных законов движения и гравитации. «Этика» Спинозы [63] Бенедикт Спиноза (1632–1677) — нидерландский философ-материалист, натуралист, один из главных представителей философии Нового времени. Считал, что мир — закономерная система, которая до конца может быть познана геометрическим методом. Прим. перев.
следует той же схеме. Полное название книги «Этика, доказанная в геометрическом порядке» (Ethica Ordine Geometrico Demonstrata). Вы можете услышать отголоски Евклида даже в Декларации независимости. Когда Томас Джефферсон [64] Дополнительные сведения о Томасе Джефферсоне, о его преклонении перед Евклидом и Ньютоном и использовании им аксиоматического подхода при написании Декларации независимости, можно найти в книге I. B. Cohen, Science and the Founding Fathers, (W. W. Norton and Company), 1995 и J. Fauvel, Jefferson and mathematics на http://www.math.virginia.edu/Jefferson/jefferson.htm.
писал: «Мы считаем эти истины самоочевидными», он имитировал стиль «Начал» Евклида. Древнегреческий математик начал с определений, постулатов и самоочевидных истин геометрии, аксиом, и из них воздвиг здание утверждений и доказательств, где истины связаны между собой посредством неопровержимой логики. Джефферсон построил Декларацию аналогичным образом: его радикальные выводы о том, что колонии имеют право на самоуправление, казались неотвратимыми, как факт геометрии.
Даже если этот документ с некоторой натяжкой можно воспринимать как часть интеллектуального наследия, имейте все же в виду, что Джефферсон читал Евклида. Через несколько лет после окончания второго президентского срока он отошел от общественной жизни и писал об этом своему старому другу Джону Адамсу 12 января 1812 года: «Я отказался от газет в обмен на Тацита и Фукидида, Ньютона и Евклида, и считаю себя гораздо счастливее».
Читать дальшеИнтервал:
Закладка: