Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Название:Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:Москва
- ISBN:978-500057-008-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.
Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Пугает то, что свет ведет себя так, будто он осмысленно изучает все возможные пути [87] Здесь речь идет об удивительном предположении Фейнмана о том, что природа на самом деле пробует все возможные пути. Однако почти все они компенсируют друг друга через квантовый аналог разрушительных помех, за исключением тех, которые очень близки к классическому пути, где действия сведены к минимуму (или, точнее, к стационарным значениям). Тогда квантовая интерференция становится конструктивной, и, скорее всего, будет выбран именно этот путь. Поэтому, по оценке Фейнмана, природа подчиняется принципу минимума. Важно то, что мы живем в макроскопическом мире повседневного опыта, где массы и взаимодействия колоссальны по сравнению с постоянной Планка. При таком классическом ограничении квантовая деструктивная интерференция становится чрезвычайно сильной и уничтожает почти все, что могло бы случиться.
, а затем выбирает лучший.
18. Хоть ломтиками, хоть кубиками [88] Хоть ломтиками, хоть кубиками (It Slices, It Dices) — это выражение было слоганом рекламной кампании на телевидении одного из первых (если не первого) кухонных комбайнов торговой марки Veg-O-Matic, выпущенного в 1961 году. Комбайн мог измельчать продукты в виде ломтиков и кубиков. Позже это выражение вошло в обиход в значении «быть многофункциональным». Прим. перев.
Математические знаки и символы часто кажутся загадочными, но лучшие из них — это визуальные ключи к их значениям. Символы нуля, единицы и бесконечности очень напоминают пустую дыру, единичную отметку и бесконечную петлю: 0, 1, ∞. А знак равенства = образован двумя параллельными линиями, поскольку, как писал его создатель валлийский математик Роберт Рекорд, в 1557 году: «Больше не существует двух вещей, которые были бы настолько равными».
В исчислениях самый узнаваемый значок — интеграл ∫. Его изящные линии вызывают в памяти музыкальный ключ или резонаторное отверстие скрипки — подходящее совпадение, учитывая то, что некоторые из очаровательных гармоник в математике выражаются интегралами. Но настоящая причина того, что математик Готфрид Лейбниц выбрал именно этот символ, менее поэтична. Это просто буква S для обозначения суммирования, но с длинной шеей.
А что суммируется — зависит от контекста. В астрономии сила притяжения Земли к Солнцу описывается интегралом. Она представляет собой общее воздействие (то есть сумму) всех сил гравитации, порождаемых каждым атомом Солнца на различных расстояниях от Земли. В онкологии растущая масса опухоли может быть смоделирована с помощью интеграла [89] Более подробную информацию о том, как интегральное исчисление помогает ученым, борющимся с раком, см. D. Mackenzie, Mathematical modeling of cancer, SIAM News, Vol. 37 (January/February 2004), и H. P. Greenspan, Models for the growth of a solid tumor by diffusion, Studies in Applied Mathematics (December 1972), pp. 317–340.
. Он позволяет определить общее количество вводимого при химиотерапии лекарственного средства.
Понимание того, почему в этих случаях требуется интегральное исчисление, а не обычное суммирование, мы получили в начальной школе. Давайте рассмотрим, с какими трудностями мы столкнулись бы, если бы действительно пытались вычислить силу притяжения Земли к Солнцу. Первая трудность заключается в том, что ни Солнце, ни Земля не являются точками. Это гигантские шары, состоящие из колоссального числа атомов. Каждый атом Солнца — это нечто вроде гравитационного буксира для каждого атома Земли. Поскольку атомы крошечные, то их взаимное притяжение почти бесконечно мало, но их бесконечно много и в совокупности они могут составлять ощутимую силу. И надо каким-то образом просуммировать все их воздействия.
Но есть и вторая, более серьезная трудность: притяжение различных пар атомов различно. Для одних оно сильнее, чем для других. Почему? Потому что сила притяжения меняется в зависимости от расстояния: чем ближе объекты, тем сильнее они притягиваются. Атомы самых удаленных друг от друга частей Солнца и Земли испытывают наименьшее притяжение; атомы, находящиеся близко друг к другу, притягиваются сильнее, а те, которые между ними, испытывают среднее по силе притяжение. Интегральное исчисление позволяет просуммировать все эти изменяющиеся силы. Удивительно, но это можно осуществить по крайней мере в идеализированной модели, если считать Землю и Солнце твердыми шарами, состоящими из бесконечного числа точек непрерывной материи, причем каждая из этих точек оказывает бесконечно малое воздействие на другие. Как и во всех исчислениях, бесконечность и пределы, на помощь!
Исторически интеграл сначала появился в геометрии для нахождения площадей криволинейных фигур. Площадь круга можно представить как сумму множества тонких ломтиков пирога. В пределе имеем бесконечное множество кусочков, каждый из которых бесконечно тонкий. Эти кусочки затем можно ловко перестроить в прямоугольник, площадь которого нетрудно найти. Это типичный пример использования интеграла. Идея интегрирования заключается в том, чтобы взять что-то сложное, нарезать его на кусочки и перетасовать так, чтобы было легко складывать.
В трехмерном обобщении этого метода Архимед (а около 400 года до н. э. и Евдокс) рассчитывал объемы различных фигур путем их представления в виде стопки множества пластин или дисков, подобной порезанной на тонкие кусочки колбасе. Посчитав объемы различных ломтиков и гениально проинтегрировав их, Архимед и Евдокс получали полный объем исходной фигуры.
Сегодня будущим математикам и ученым по-прежнему даются в качестве упражнений классические геометрические задачи, требующие решения с помощью интегралов. Это одни из самых сложных в процессе обучения упражнений, и многие студенты ненавидят их. Но нет более верного способа отточить навыки работы с интегралами, которые понадобятся в любой области, где используются количественные вычисления, — от физики до финансирования.
Одна из таких мозгодробительных задач — вычисление объема твердого тела, которое является общей частью двух одинаковых цилиндров [90] В математической литературе два одинаковых круглых цилиндра, оси которых пересекаются под прямым углом, называются по-разному: тело Штейнмеца, или бицилиндр. Для подготовленного читателя см. http://mathworld.wolfram.com/SteinmetzSolid.html и http://en.wikipedia.org/wiki/Steinmetz_solid. На страничке «Википедии» тоже есть очень полезная компьютерная анимация, которая показывает, как из пересекающихся цилиндров появляется призрачное тело Штейнмеца. Его объем современными методами можно рассчитать прямолинейно, но не прозрачно. Архимед и Цзу Чунчжи знали более простое решение с использованием метода нарезки на кусочки и сравнения площадей квадрата и круга. Удивительно ясное изложение представлено в Martin Gardner’s column Mathematical games: Some puzzles based on checkerboards, Scientific American, Vol. 207 (November 1962), p. 164. Об Архимеде и Цу Чунчжи см. Archimedes, The Method, English translation by T. L. Heath (1912), reprinted by Dover (1953); и T. Kiang, An old Chinese way of finding the volume of a sphere, Mathematical Gazette, Vol. 56 (May 1972), pp. 88–91. Мортон Мур отмечает, что бицилиндр также нашел применение в архитектуре: «Римляне и норманны при возведении цилиндрических сводов зданий были знакомы с геометрией пересекающихся цилиндров, где при пересечении двух таких сводов формировался крестообразный свод». Об этом и применении бицилиндров в кристаллографии см. M. Moore, Symmetrical intersections of right circular cylinders, Mathematical Gazette, Vol. 58 (October 1974), pp. 181–185.
, пересекающихся под прямым углом.
Интервал:
Закладка: