Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Название:Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:Москва
- ISBN:978-500057-008-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.
Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Требуется очень богатое воображение, чтобы представить себе эту трехмерную фигуру. Поэтому нет ничего постыдного в том, чтобы признать свое поражение и отыскать другой способ ее визуализации. В настоящее время компьютерная графика [91] Интерактивная демонстрация бицилиндров и других задач интегрального счисления доступна онлайн на The Wolfram Demonstrations Project (http://demonstrations.wolfram.com/). Чтобы с ними поиграть, нужно загрузить бесплатный интерактивный Mathematica Player (http://www.wolfram.com/products/player/), который в дальнейшем позволит вам исследовать сотни других интерактивных примеров из всех разделов математики. Наглядную демонстрацию бицилиндра см. на The bicylinder demo по адресу http://demonstrations.wolfram.com/IntersectingCylinders/. Мамикон Мнацаканян на сайте Калифорнийского технологического института (Caltech) представил серию анимаций, иллюстрирующих Архимедов метод разбиения на кусочки и его мощь. Моя любимая страничка: http://www.its.caltech.edu/~mamikon/. На Sphere.html изображены красивые отношения между объемами сферы и двойного конуса и цилиндра, чьи высота и радиус совпадают с радиусом сферы. Это же более наглядно можно увидеть, виртуально сливая воду из цилиндра в две другие формы, см. http://www.its.caltech.edu/~mamikon/SphereWater.html. Такие же элегантные механические аргументы на службе у математики приведены в работе M. Levi, The Mathematical Mechanic (Princeton University Press, 2009).
позволяет легко воспроизвести подобные фигуры [92] Обращаем ваше внимание на то, что на этом рисунке изображена только половина тела пересечения. Прим. ред.
.
Примечательно, что фигура имеет квадратное поперечное сечение, несмотря на то что является пересечением круглых цилиндров.
Сделаем стопку из бесконечного множества тонюсеньких квадратов, которая сужается от большого квадрата в середине фигуры до все более маленьких квадратиков и превращается в точку вверху и внизу.
Изобразить фигуру — всего лишь первый шаг. Для определения ее объема надо вычислить объемы всех отдельных составляющих ее кусочков. Архимеду удалось это сделать только в силу своей поразительной изобретательности [93] Применение механического метода Архимеда к задаче нахождения объема бицилиндра см. T. L. Heath, ed., Proposition 15, The Method of Archimedes, Recently Discovered by Heiberg (Cosimo Classics, 2007), р. 48. На странице 13 этого же тома Архимед признается, что рассматривает свой механический метод как средство для поиска теорем, а не их доказательства: «Некоторые вещи сначала мне стали ясны благодаря механическому методу, хотя в дальнейшем они должны были бы быть представлены средствами геометрии, потому что их исследование механическим методом фактически было просто демонстрацией. Но, конечно, найти доказательство проще, заранее получив некоторые знания по этому вопросу, чем если их не иметь». Популярное изложение работы Архимеда см. R. Netz and W.Noel, The Archimedes Codex (Da Capo Press, 2009).
. Он использовал механический метод, основанный на рычаге и центрах тяжести, по сути, взвешивая фигуру в своем сознании, уравновешивая ее другими, уже ему известными. Недостатком его подхода, помимо того что он требовал гениальных способностей, было то, что его можно было применить только к очень ограниченному числу фигур.
Концептуальные проблемы, подобные этой, ставили в тупик лучших математиков в течение следующих девятнадцати веков — до середины XVII столетия, когда Джеймс Грегори, Исаак Барроу, Исаак Ньютон и Готфрид Лейбниц обосновали то, что сейчас называется фундаментальной теоремой интегрального исчисления [94] Фундаментальная теорема интегрального исчисления — теорема Ньютона — Лейбница. Далее цитата из «Википедии»: «Теорема Ньютона — Лейбница утверждает, что дифференцирование и интегрирование являются взаимно обратными операциями. Точнее, это касается значения первообразных для определенных интегралов. Поскольку, как правило, легче вычислить первообразную, чем применять формулу определенного интеграла, теорема дает практический способ вычисления определенных интегралов. Она также может быть интерпретирована как точное утверждение о том, что дифференцирование является обратной операцией интегрирования. Теорема гласит: если функция f непрерывна на отрезке [ a, b ] и F есть функция, производная которой равна f на интервале ( a, b ), то: Кроме того, для любого x из интервала ( a, b )
. Она мощно сковала два типа изменений, которые изучаются в исчислениях: накапливаемые изменения, представленные интегралами, и локальные изменения, представленные производными (см. главу 17). Выявив эти связи, основная теорема значительно расширила вселенную интегралов и уменьшила утомительную работу по их вычислению. В настоящее время ее можно запрограммировать на компьютере. С ее помощью даже задача о пересечении двух цилиндров, которая относилась когда-то к уровню мирового класса, становится общедоступной.
Только простейшие виды изменений могли быть проанализированы до появления основной теоремы интегрального исчисления. Когда что-то меняется постепенно , с постоянной скоростью, алгебра прекрасно работает. Это из области «расстояние равно скорости, умноженной на время». Например, автомобиль движется с неизменной скоростью 60 миль в час, при этом он проедет 60 миль за первый час и 120 миль к концу второго часа.
А как насчет изменений, которые происходят при изменении скорости?
Все вокруг нас постоянно меняется: увеличение скорости упавшего с высотного здания пенни, быстрая смена потоков, эллиптические орбиты планет, наши суточные биоритмы. Только исчисление может справиться с накапливаемым эффектом от неоднородных изменений, подобных этим.
На протяжении почти двух тысячелетий после Архимеда для прогнозирования эффекта от постоянных изменений существовал только один метод — последовательное складывание различных ломтиков. Предполагалось, что вы считаете скорость изменения в пределах каждого ломтика постоянной, затем вызываете аналог «расстояние равно скорости, умноженной на время», чтобы медленно двигаться до конца ломтика, и повторяете это до тех пор, пока все кусочки не будут рассмотрены. В большинстве случаев выполнить это невозможно. Бесконечные суммы слишком сложно вычислять.
Фундаментальная теорема интегрального исчисления позволила решить многие из ранее нерешаемых задач, упростила вычисление интегралов, по крайней мере для элементарных функций (суммы и произведения степеней, экспоненты, логарифмы и тригонометрические функции), которыми описываются многие явления в природе.
Читать дальшеИнтервал:
Закладка: