Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Название:Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2014
- Город:Москва
- ISBN:978-500057-008-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Строгац - Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир краткое содержание
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.
Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью. Автор объясняет фундаментальные математические идеи просто и элегантно, приводя блистательные примеры, понятные каждому.
Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Опыт начинается с того, что в верхнюю часть доски Гальтона запускаются сотни шариков. При падении они сталкиваются со штырьками и с равной вероятностью отскакивают то вправо, то влево, а затем распределяются внизу доски, попадая в отсеки одинаковой ширины. Высота столбика из шариков показывает, с какой вероятностью шарик может оказаться в данном месте. Большинство шариков размещаются примерно в середине, по бокам их уже меньше, и еще меньше — по краям. В общем, картина чрезвычайно предсказуема: шарики всегда образуют распределение в форме колокола, хотя предугадать, где окажется каждый отдельно взятый шарик, невозможно.
Каким образом отдельные случайности превращаются в общие закономерности? Но именно так действует случайность. В среднем столбике скопилось больше всего шариков потому, что, прежде чем скатиться вниз, многие из них совершат примерно одинаковое количество прыжков вправо и влево и в результате окажутся где-то посередине. Несколько одиноких шариков, расположившихся по краям, образуют хвосты распределения — это те шарики, которые при столкновении со штырьками отскакивали всегда в одном направлении. Такие отскоки маловероятны, поэтому по краям так мало шариков.
Подобно тому как местоположение каждого шарика определяется суммой множества случайных событий, многие явления в этом мире являются следствием множества мелких обстоятельств и тоже подчиняются колоколообразной кривой. По этому принципу работают страховые компании. Они с высокой точностью могут назвать количество своих клиентов, которые умирают каждый год. Однако не знают, кому именно не повезет на этот раз.
Или возьмем, к примеру, рост человека. Он зависит от бесчисленного количества случайностей, связанных с генетикой, биохимией, питанием и окружающей средой. Следовательно, велика вероятность, что при рассмотрении в совокупности рост взрослых мужчин и женщин будет представлять собой колоколообразную кривую [119] Данные о распределении роста населения США см. в статье M. A. McDowell et al., Anthropometric reference data for children and adults: United States, 2003–2006, National Health Statistics Reports, № 10 (October 22, 2008), доступна на http://www.cdc.gov/nchs/data/nhsr/nhsr010.pdf.
.
В одном блоге под названием «Ложные данные, которые люди сообщают о себе в интернете» статистическая служба сайта знакомств OkCupid [120] OkCupid — самый большой бесплатный сайт знакомств в США, который летом 2011 года насчитывал семь миллионов активных пользователей. Специалисты сайта в области статистики проводят собственный анализ на основе анонимных и обобщенных данных его клиентов, а затем публикуют результаты исследований в своем блоге OkTrends (http://blog.okcupid.com/index.php/about/). Распределения роста см. C. Rudder, The big lies people tell in online dating, на http://blog.okcupid.com/index.php/the-biggest-lies-in-online-dating/. Я благодарю Кристиана Раддера за любезно предоставленную возможность использовать графики, приведенные в его блоге.
недавно опубликовала график роста своих клиентов или, скорее, указанных ими значений. Обнаружилось, что показатели роста представителей обоих полов, как и ожидалось, образуют колоколообразную кривую. Однако удивительно то, что оба распределения были примерно на два дюйма смещены вправо относительно ожидаемых значений.
Таким образом, либо рост клиентов, опрошенных компанией OkCupid, превышает средний, либо при описании себя в интернете они прибавляют к своему росту еще пару дюймов.
Идеализированной версией подобных колоколообразных кривых является то, что математики называют нормальным распределением. Это одно из важнейших понятий в статистике, имеющее теоретическое обоснование. Можно доказать, что нормальное распределение возникает при сложении большого количества мелких случайных факторов, причем каждый из них действует независимо от других. И многие события происходят именно таким образом.
Но не все. И это второй пункт, на который я хотел бы обратить внимание. Нормальное распределение не такое уж вездесущее, как кажется. На протяжении сотни лет, и особенно в последние несколько десятилетий, ученые и специалисты в области статистики отмечают существование множества явлений, отклоняющихся от этой кривой и следующих собственному графику. Любопытно, что подобные типы распределений практически не упоминаются в учебниках по элементарной статистике, а если и встречаются, то обычно рассматриваются как некие патологии. Это странно. Я попытаюсь объяснить, что многие явления современной жизни приобретают больший смысл при условии понимания этих «патологических» распределений. Это новая нормальность.
Возьмем, к примеру, распределение размеров городов в США. Вместо того чтобы скапливаться вокруг некоей средней величины колоколообразной кривой, подавляющее большинство городов имеют небольшой размер и, следовательно, скапливаются в левой части графика.
И чем больше население города, тем реже такие города встречаются. Иначе говоря, в совокупности распределение будет представлять собой скорее кривую в форме буквы L, чем колоколообразную кривую.
И в этом нет ничего удивительного. Все знают, что мегаполисов гораздо меньше, чем маленьких городов. Хотя это не так очевидно, размеры городов подчиняются простому красивому распределению — если посмотреть на них в логарифмическом масштабе.
Будем считать, что различие между двумя городами одно и то же, если их население отличается в одно и то же число раз (подобно тому как две любые клавиши рояля, отстоящие на октаву, всегда разнятся вдвое по частоте). И сделаем то же самое на вертикальной оси.
Теперь данные располагаются на кривой, представляющей собой почти идеальную прямую линию. Исходя из свойств логарифмов, нетрудно вывести, что исходная L-образная кривая представляет собой степенн у ю зависимость, которая описывается функцией вида
где x — население города, у — количество городов, имеющих такой размер, с — константа, а показатель степени a (показатель степенн о й зависимости) определяет отрицательный наклон прямой линии.
Читать дальшеИнтервал:
Закладка: