Генри Дьюдени - 200 знаменитых головоломок мира

Тут можно читать онлайн Генри Дьюдени - 200 знаменитых головоломок мира - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство ООО Фирма Издательство ACT, год 1999. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    200 знаменитых головоломок мира
  • Автор:
  • Жанр:
  • Издательство:
    ООО Фирма Издательство ACT
  • Год:
    1999
  • Город:
    Москва
  • ISBN:
    5-237-02035-6
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Генри Дьюдени - 200 знаменитых головоломок мира краткое содержание

200 знаменитых головоломок мира - описание и краткое содержание, автор Генри Дьюдени, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.

Книга несомненно доставит большое удовольствие всем любителям этого жанра.

200 знаменитых головоломок мира - читать онлайн бесплатно полную версию (весь текст целиком)

200 знаменитых головоломок мира - читать книгу онлайн бесплатно, автор Генри Дьюдени
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Первоначально я сформулировал эту задачу для 6 человек и 10 дней. Разумеется, легко видеть, что максимальное число расположений для n человек равно 200 знаменитых головоломок мира - изображение 278. Эрнст Бергольт первым обнаружил сравнительно простой метод решения для всех случаев, где n равно простому числу + 1. Затем я указал способ построения решения для 10 человек, опираясь на который, Е. Д. Бьюли нашел общий метод для любых четных чисел. Нечетные числа, однако, оказались крайне трудными, и единственными нечетными числами, с которыми удалось справиться, были 7 (приведен выше), 5, 9, 17 и 33, причем четыре последних равны некой степени 2 плюс 1. Наконец, хотя и не без больших трудностей, я нашел некий тонкий метод решения для всех случаев и выписал схемы для всех чисел до 25 включительно. Для случая 11 решение получил также У. Нэш. Быть может, читатель испытает свои способности в случае 13. Он обнаружит, что это необычайно крепкий орешек.

91.Существует 12 способов расположения коробок без учета рисунков. Если бы все 13 рисунков были различны, то ответ оказался бы равен 93 312. Но поскольку в некоторых случаях коробки можно переставлять, не меняя расположения рисунков, число способов уменьшается на 1728, и, следовательно, коробки в соответствии с условиями можно расположить 91 584 способами. Я предоставляю моим читателям выяснить самостоятельно, как получаются эти числа.

92.Число способов, которыми можно разместить четырех поросят по 36 свинарникам в соответствии с заданными условиями, равно 17, включая приведенный мною пример и не считая новыми расположения, полученные из данных с помощью поворотов и отражений. Яниш в своей книге Analyse Mathematique au jeu des Echecs (1862 г.) утверждает, что существует 21 решение небольшой задачи, на которой основана данная головоломка. Поскольку я сам нашел только 17, то я вновь изучил этот вопрос и обнаружил, что он ошибается, несомненно, засчитав решения, полученные с помощью поворотов и отражений, за новые.

Вот 17 ответов. Цифры обозначают горизонтали, а их положение показывает вертикали. Так, например, 104 603 означает, что мы помещаем поросенка в первую строку и первый столбец, никого не помещаем во второй столбец, помещаем другого поросенка в четвертую строку и третий столбец, третьего — в шестую строку и четвертый столбец, никого — в пятый столбец, четвертого поросенка мы помещаем в третью строку и шестой столбец. Размещение Е я привел, формулируя условия:

Можно заметить что N и Q полусимметричны относительно центра и следовательно - фото 279

Можно заметить, что N и Q полусимметричны относительно центра и, следовательно, с помощью поворотов и отражений породят лишь по 2 расположения каждое, что Н четвертьсимметрично и породит лишь 4 расположения, тогда как 14 других расположений породят с помощью поворотов и отражений по 8 расположений каждое. Следовательно, поворачивая и отражая данные 17 расположений, мы получим всего (2 × 2) + (4 × 1) + (8 × 14) = 120 способов.

Трех поросят можно поместить так, чтобы каждый свинарник располагался на одной прямой с поросенком при условии, что поросятам не запрещается располагаться на одной прямой с другими; но имеется только один способ сделать это (не считая поворотов и отражений), а именно: 105030.

93.Расположите кубики и знаки умножения следующим образом: 915 × 64 и 732 × 80; в обоих случаях произведение окажется равным максимально возможному числу 58 600.

94.Наименьшее возможное число ходов равно 22, то есть 11 для лис и 11 для гусей. Вот одно из решений головоломки:

Разумеется читатель должен сделать первый ход указанный в числителе первой - фото 280

Разумеется, читатель должен сделать первый ход, указанный в числителе первой дроби, затем ход, указанный в знаменателе, затем ход, указанный в числителе второй дроби, и т. д. Я применю здесь мой метод «пуговиц и веревочек». На диаграмме А данная головоломка представлена на куске шахматной доски с шестью конями. Сравнение с рисунком из условия показывает, что там я избавил себя от необходимости объяснять неискушенному читателю, как ходит шахматный конь, проведя прямые, показывающие эти ходы. Так что эти две головоломки практически одно и то же, но в разных одеждах. Далее, сравнив рисунок из условия с диаграммой Б, можно заметить, что, расцепив «веревочки», соединяющие кружки, я упростил диаграмму, не изменив существенные соотношения между «пуговицами», или кружками. Читатель теперь без труда сам установит, что требуется 11 ходов для лис и 11 для гусей. Он заметит, что гусь с 1 или 3 должен ходить на 8, дабы избежать соседства с лисой и позволить лисе с 11 перейти на кольцо. Если мы пойдем 1— 8, то ясно, что для лис лучше ходить 10—5, а не 12— 5, когда все окажутся на окружности, то им нужно просто прогуляться вдоль нее по часовой стрелке, позаботившись сделать последними ходы 8—3 и 5—12. Таким образом, с помощью этого метода наша головоломка становится невероятно простой. (См. также замечание по поводу решения задачи 13.)

95На рисунке показано как из найденной доски можно вырезать два куска из - фото 281

95.На рисунке показано, как из найденной доски можно вырезать два куска, из которых удается сложить квадратную крышку стола. А, В, С, D — углы стола. Способ, каким кусок Е вставляется в кусок F, должен быть очевидным для читателя. Заштрихованная часть удаляется.

96Это число должно быть наименьшим общим кратным 1 2 3 и т д до 15 - фото 282

96.Это число должно быть наименьшим общим кратным 1, 2, 3 и т. д. до 15, которое при делении на 7 дает остаток 1, на 9 — 3, на 11 — 10, на 13 — 3 и при делении на 14 дает остаток 8. Таким числом является 120. Следующее число с таким свойством — это 360 480, но поскольку не сохранилось свидетельств, чтобы одно дерево (да еще очень молодое) приносило когда-нибудь такое огромное количество яблок, единственным приемлемым ответом может быть лишь 120.

97.Прямоугольная закрытая цистерна, содержащая заданное количество воды и обладающая вместе с тем минимальной поверхностью, должна быть правильным кубом (то есть каждая ее сторона должна представлять собой квадрат). Для цистерны в 1000 кубических футов внутренние размеры должны быть 10×10×10 футов, а цинка на нее пойдет 600 квадратных футов. В случае цистерны без крышки пропорции будут точно как у полукуба. Это и есть требуемые «точные пропорции». Точные размеры привести нельзя, хотя близкими приближенными значениями будут 12,6 × 12,6 × 6,3 фута [36] Автор имеет в виду, что размеры цистерны находятся в отношении 1:1: («как у полукуба»). Точные размеры таковы: 10 × 10 × 5 фута, что приближенно равно значениям, указанным автором. — Примеч. пер. . Цистерна с такими размерами будет содержать чуть больше воды, на что покупатель не станет жаловаться, а жестянщик затратит несущественное количество лишнего металла.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генри Дьюдени читать все книги автора по порядку

Генри Дьюдени - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




200 знаменитых головоломок мира отзывы


Отзывы читателей о книге 200 знаменитых головоломок мира, автор: Генри Дьюдени. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x