Генри Дьюдени - 200 знаменитых головоломок мира

Тут можно читать онлайн Генри Дьюдени - 200 знаменитых головоломок мира - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство ООО Фирма Издательство ACT, год 1999. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    200 знаменитых головоломок мира
  • Автор:
  • Жанр:
  • Издательство:
    ООО Фирма Издательство ACT
  • Год:
    1999
  • Город:
    Москва
  • ISBN:
    5-237-02035-6
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Генри Дьюдени - 200 знаменитых головоломок мира краткое содержание

200 знаменитых головоломок мира - описание и краткое содержание, автор Генри Дьюдени, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.

Книга несомненно доставит большое удовольствие всем любителям этого жанра.

200 знаменитых головоломок мира - читать онлайн бесплатно полную версию (весь текст целиком)

200 знаменитых головоломок мира - читать книгу онлайн бесплатно, автор Генри Дьюдени
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если мы сложим цифры любого числа и затем, если потребуется, повторим эту процедуру, то в конце концов мы получим однозначное число. Я называю его «цифровым корнем». Так, цифровой корень 521 равен 8, а 697 — 4. Далее: очевидно, что цифровые корни двух искомых чисел должны давать одинаковый корень в сумме и произведении. Это может быть лишь в случае, когда корни двух чисел равны 2 и 2, или 9 и 9, или 3 и 6, или 5 и 8. Следовательно, цифровой корень двузначного сомножителя должен равняться 2, 3, 5, 6, 8 или 9. В каждом случае есть 10 таких чисел. Я выписал все 60, затем я вычеркнул те из них, у которых вторая цифра превосходит первую и у которых обе цифры совпадают (всего 36 чисел); затем я вычеркнул те числа, где первая цифра нечетна, а вторая четна (7 чисел); затем — все кратные 5 (еще 3 числа). Числа 21 и 62 я отверг после исследования, в детали которого не хочу здесь входить. Теперь из первоначальных 60 чисел осталось только 12 следующих: 83, 63, 81, 84, 93, 42, 51, 87, 41, 86, 53 и 71. Это единственные возможные множители, которые мне пришлось изучить.

Теперь мои действия стали столь же удивительными, как и простыми. Сначала, изучая 83, я вычитаю 10 и получаю 73. Добавляя нули ко второй цифре, я говорю, что если 30 000 и т. д., разделенное на 73, даст когда-либо в остатке 43, то частное и будет искомым множителем для 83. Этим путем я получил 43. Единственным кратным 3, дающим 8 на месте единиц, является 6. Следовательно, я умножаю 73 на 6 и получаю 438, или 43 после отбрасывания 8. Далее: при делении 300000 на 73 получается остаток 43, а частное равно 4109. К этому я добавляю уже упомянутое 6 и получаю пример чародея 41 096 × 83.

Исследуя четные числа, разберем два случая. Так, взяв 86, мы можем сказать, что если при делении 60 000 и т. д. на 76 мы получим когда-либо 22 или 60 (поскольку 3×6 и 8×6 оба дают 8), то найдем тем самым решение задачи. Но исследовав первое число, я отверг его и заметил, что если 60 разделить на 76, то получится 0 и 60 в остатке. Следовательно, 8 × 86 = 688 — это и есть второй пример. Можно показать в случае 71, что при делении 10 000 и т. д. на 61 получается в остатке 42 (7 × 61 = 427) и очень длинное частное, приведенное в начале этого раздела, с добавленной к нему 7.

Другие множители не приводят к решению, так что 83, 86 и 71 — три единственных возможных множителя. Те, кто хорошо знаком с принципом рекуррентных десятичных дробей (которого я немного касаюсь в следующей задаче), поймут условия, при которых остатки повторяются после некоторых периодов, и обнаружат, что лишь в двух случаях из трех придется проводить длинные выкладки. Ясно также, что для каждого множителя существует неограниченное число множимых.

83.Решение таково. Поместите на ленточку следующее довольно длинное число:

0212765957446808510638297872340425531914893617.

Его можно умножить на любое число до 46 включительно, и при этом на кольце получится та же самая последовательность цифр. Исходное число можно умножать на любое число до 16 включительно. Я возьму в качестве предела 9, дабы не сбить читателей со следа. Суть дела в том, что эти два числа представляют собой просто числа в десятичном разложении соответственно картинка 253и картинка 254. Умножьте первое число на 17, а второе на 47, и вы получите сплошные девятки.

Записывая обычную дробь, скажем, картинка 255, в десятичном виде, мы действуем следующим образом: добавляем к делимому столько нулей, сколько нам потребуется, до тех пор, пока остаток не станет равным нулю или пока не получим столько знаков, сколько потребуется, ибо каждая дополнительная цифра в бесконечном десятичном разложении приближает нас все ближе и ближе к точному значению.

Далее поскольку все степени 10 могут содержать кратные 2 и 5 то отсюда - фото 256

Далее: поскольку все степени 10 могут содержать кратные 2 и 5, то отсюда следует, что десятичное разложение никогда не оборвется, если знаменатель вашей обыкновенной дроби содержит какой-либо множитель, отличный от этих двух чисел. Так, картинка 257, картинка 258и картинка 259— приводят к конечным десятичным дробям 0,5, 0,25 и 0,125; картинка 260и картинка 261дают 0,2 и 0,4; картинка 262и картинка 263приводят к 0,1 и 0,05, ибо в этих случаях знаменатели состоят из кратных 2 и 5. Однако, если вы захотите записать в десятичном виде картинка 264, картинка 265или картинка 266, то никогда не доберетесь до конца, а получите дроби 0,3333 и т.д., 0,166666 и т. д. и 0,142857142857142857 и т. д., где в первом случае 3 повторяется до бесконечности, во втором случае повторяется 6, а в третьем случае мы получаем период 142857.

В случае картинка 267(в «Задаче с ленточкой») мы получим повторяющийся период 0,0588235294117647.

Далее, в приведенных выше выкладках последовательные остатки равны 1, 10, 15, 14, 4, 6, 9 и т. д.; именно эти числа я изобразил на внутреннем круге на рисунке. Можно заметить, что каждое число от 1 до 16 встречается один раз и что если мы умножим наше «ленточное» число на любое из чисел внутреннего круга, то положение последнего точно указывает на начало произведения. Так, если мы умножим наше число на 4, то получим 235 и т. д., если мы умножим его на 6, то получим 352 и т. д. Следовательно, мы можем умножать исходное число на любое число от 1 до 16 и получить при этом желаемый результат.

Суть головоломки состоит в следующем Любое простое число за исключением 2 и - фото 268

Суть головоломки состоит в следующем. Любое простое число, за исключением 2 и 5, которые являются делителями 10, делит без остатка любое число, состоящее из девяток, количество которых на I меньше данного простого числа. Например, 999 999 (6 девяток) делится на 7, 16 девяток делятся на 17, 18 девяток — на 19 и т. д. Это будет справедливо всегда, хотя порой достаточно и меньшего числа девяток; например, 9 делится на 3, 99 делится на 11, 999 999 — на 13, и здесь наше «ленточное» правило для последовательных чисел не работает и действует иной закон. Следовательно, поскольку 0 и 7 на концах ленточки нельзя перемещать на другие места, мы должны искать дробь с простым знаменателем, оканчивающимся на 7, что приводит к полному периоду. Мы берем 37 и обнаруживаем, что соответствующий период слишком мал, 0,027, ибо 37 делит 999; следовательно, это число не годится. Затем мы берем 47 и находим, что его полный период совпадает с 46-значным числом, приведенным в начале данного раздела.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Генри Дьюдени читать все книги автора по порядку

Генри Дьюдени - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




200 знаменитых головоломок мира отзывы


Отзывы читателей о книге 200 знаменитых головоломок мира, автор: Генри Дьюдени. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x