Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания

Тут можно читать онлайн Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    φ – Число Бога. Золотое сечение – формула мироздания
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-094497-2
  • Рейтинг:
    5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание

φ – Число Бога. Золотое сечение – формула мироздания - описание и краткое содержание, автор Марио Ливио, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…

Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

φ – Число Бога. Золотое сечение – формула мироздания - читать онлайн бесплатно ознакомительный отрывок

φ – Число Бога. Золотое сечение – формула мироздания - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Марио Ливио
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Колоссальный мыслительный скачок, который проделал Мандельброт, когда сформулировал геометрию фракталов, состоял в основном в том, что ученый обнаружил, что все эти затейливые зигзаги – не помеха математическому описанию морфологии, а главная ее характеристика.

Рис 111 Первым открытием Мандельброта была важность самоподобия того факта - фото 127

Рис. 111

Первым открытием Мандельброта была важность самоподобия – того факта, что многие природные формы представляют собой бесконечную последовательность мотивов, повторяющих сами себя внутри других таких же мотивов на разных масштабах. Великолепный пример проявления этого качества – раковина наутилуса (рис. 4), как, впрочем, и самая обычная цветная капуста: если отламывать от кочана соцветия, а от них – кусочки все меньше и меньше, они до какого-то предела все равно будут точным подобием целого кочана. Сфотографируйте камешек, отколовшийся от скалы, и вам, возможно, не удастся отличить снимок от фотографии целого утеса. Этим свойством обладает и непрерывная дробь, если ее напечатать (рис. 112): увеличьте еле видные циферки, и вы обнаружите всю ту же непрерывную дробь. Однако во всех этих случаях увеличение масштаба не сглаживает некоторых шероховатостей. Более того, неправильность характерна для любого масштаба.

Рис 112 Тогда Мандельброт задался вопросом как определить измерения - фото 128

Рис. 112

Тогда Мандельброт задался вопросом: как определить измерения предмета, обладающего подобной фрактальной структурой? В мире евклидовой геометрии у любого предмета есть измерения, которые можно выразить целыми числами. У точки число измерений – нуль, у прямой – одно, у плоских фигур вроде треугольников и пятиугольников – два, у объемных тел вроде сфер и платоновых многогранников – три. А фрактальные кривые вроде молнии, с другой стороны, так агрессивно изгибаются туда-сюда, что попадают куда-то между одним и двумя измерениями. Если след молнии относительно гладкий, можно представить себе, что число фрактальных измерений близко к единице, если же он очень извилистый, следует ожидать числа измерений, близкого к двум. Все эти размышления вылились в вопрос, сделавшийся в наши дни знаменитым: «Какова длина побережья Британии?» Мандельброт дал на это неожиданный ответ: длина береговой линии, оказывается, зависит от длины линейки, которую возьмет измеряющий. Представьте себе, что вы начинаете со спутниковой карты Британии со стороной в один фут. Измеряете длину побережья, умножаете на нужный коэффициент, исходя из заданного масштаба карты. При таком методе, разумеется, пропадут всякие мелкие извивы береговой линии, которых на карте не видно. Теперь представьте себе, что вы вооружаетесь палкой метровой длины и начинаете долгое путешествие вдоль берегов Британии, тщательно измеряя береговую линию метр за метром. Результат, несомненно, будет гораздо больше прежнего, поскольку вам удастся зафиксировать куда более мелкие извивы и повороты. Однако вы наверняка заметите, что на более мелких участках вы все равно упустите какие-то подробности. Дело в том, что чем меньше будет наша линейка, тем больше окажется результат измерений, потому что всегда оказывается, что при уменьшении масштаба выявляется подструктура. Из этого следует, что, если имеешь дело с фракталами, нуждается в пересмотре даже концепция длины как средства передачи расстояния. Контуры береговой линии при увеличении не становятся прямыми, изгибы присутствуют при любом масштабе, и общая ее длина возрастает бесконечно – по крайней мере, пока мы не дойдем до атомов.

Рис 113 Прекрасный пример такой ситуации линия которую можно считать - фото 129

Рис. 113

Прекрасный пример такой ситуации – линия, которую можно считать очертаниями берегов некоей воображаемой страны. Снежинка Коха – кривая, которую первым описал в 1904 году шведский математик Нильс Хельге фон Кох (1870–1924) (рис. 113). Начертим равносторонний треугольник со стороной в один дюйм. Теперь в середине каждой стороны достроим треугольники поменьше – со стороной в одну треть дюйма. В результате на этом этапе у нас получится звезда Давида. Обратите внимание, что периметр первоначального треугольника составлял три дюйма, а теперь он состоит из двенадцати сегментов по трети дюйма каждый, так что общая его длина равняется уже четырем дюймам. Теперь будем последовательно повторять эту процедуру – на каждой стороне треугольника будем достраивать новый с длиной стороны в одну треть предыдущей. Каждый раз длина периметра будет возрастать с коэффициентом 4/3, и так до бесконечности, несмотря на то что линия ограничивает замкнутое пространство конечной площади (можно доказать, что площадь стремится к 8/5 площади первоначального треугольника).

Открытие фракталов заставило задуматься, сколько же у них измерений. Фрактальное измерение – это мера «сморщенности» фрактала, то есть того, насколько быстро увеличиваются длина, площадь или объем, если измерять их на непрерывно уменьшающемся масштабе. Например, интуитивно мы чувствуем, что кривая Коха (рис. 113, внизу) занимает больше пространства, чем одномерная линия, но меньше, чем двухмерный квадрат. Но разве так бывает, чтобы у чего-то было дробное измерение? Ведь между 1 и 2 нет никаких целых чисел. Поэтому Мандельброт принял концепцию, выдвинутую в 1919 году немецким математиком Феликсом Хаусдорфом (1868–1942) – концепцию дробных измерений, которая на первый взгляд не укладывается в голове. Хотя поначалу подобная идея вызывает некоторую оторопь, оказалось, что именно дробные измерения – прекрасный инструмент, позволяющий охарактеризовать степень неправильности, или фрактальной размерности, предметов. Чтобы получить умопостижимое определение фрактального измерения или измерения самоподобия, удобно воспользоваться в качестве точек отсчета знакомыми целочисленными измерениями – 0, 1, 2 и 3. Идея в том, чтобы разобраться, сколько мелких объектов составляют крупный при любом количестве измерений. Например, если разделить одномерный отрезок пополам, то получим два сегмента (коэффициент сокращения f = 1/2). Если разделить двумерный квадрат на «подквадраты» с половинной длиной стороны (коэффициент сокращения опять же f = 1/2), то получим 4 = 2 2квадрата. Если же мы возьмем длину стороны в 1/3 первоначальной (f = 1/3), квадратов станет 9 = 3 2. Если же мы поступим также с трехмерным кубом, то деление ребра пополам (f = 1/2) даст нам 8 = 2 3кубиков, а ребро в 1/3 первоначального – 27 = 3 3кубиков (рис. 114). Если изучить все эти примеры, обнаружим, что между количеством «субобъектов» n, коэффициентом сокращения длины f и измерением D есть определенная взаимосвязь. И вот какая: n = (1 /f) D. (Другую форму записи этого соотношения я привожу в Приложении 7.) Если применить эту формулу к снежинке Коха, получится фрактальное измерение, равное примерно 1,2619.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марио Ливио читать все книги автора по порядку

Марио Ливио - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




φ – Число Бога. Золотое сечение – формула мироздания отзывы


Отзывы читателей о книге φ – Число Бога. Золотое сечение – формула мироздания, автор: Марио Ливио. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x