Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания
- Название:φ – Число Бога. Золотое сечение – формула мироздания
- Автор:
- Жанр:
- Издательство:Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a
- Год:2015
- Город:Москва
- ISBN:978-5-17-094497-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание
Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…
Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.
φ – Число Бога. Золотое сечение – формула мироздания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
«Феномен первой цифры» первым отметил астроном и математик Саймон Ньюкомб (1835–1909) в 1881 году. Он обратил внимание, что в логарифмических таблицах в библиотеке, которыми тогда пользовались при вычислениях, страницы, где были напечатаны числа, начинающиеся с 1 и 2, значительно грязнее последующих, а к концу таблицы становятся все чище и чище. Если бы это были скверные романы, которые читатели бросали на середине, это еще можно было бы понять, однако в случае математических таблиц это очевидно показывало, что числа, начинающиеся с 1 и 2, встречаются чаще других. Однако Ньюкомб не просто установил этот факт, а пошел гораздо дальше – он вывел формулу , которая должна была показывать, с какой вероятностью случайное число начинается с конкретной цифры. Эта формула – она дана в Приложении 9 – дает для 1 вероятность в 30 %, для 2 – примерно 17,6 %, для 3 – около 12,5 %, для 4 – около 9,7 %, для 5 – примерно 8 %, для 6 – приблизительно 6,7 %, для 7 – где-то 5,8 %, для 8 – приблизительно 5 % и для 9 – примерно 4,6 %. Статья Ньюкомба, опубликованная в 1881 году в « American Journal of Mathematics », и открытый им «закон» остались совершенно незамеченными, однако миновало целых 57 лет, и физик Фрэнк Бенфорд из « General Electric » заново открыл этот закон – надо полагать, независимо – и проверил его на огромных массивах данных о речных бассейнах, бейсбольной статистике и даже числах, которые мелькают в статьях в « Reader ’ s Digest ». Все эти данные поразительно точно соответствовали выведенной формуле, и теперь она известна как закон Бенфорда.
Однако закону Бенфорда подчиняются не все списки чисел. Например, телефонные номера обычно начинаются с определенного кода, соответствующего региону. Даже таблицы квадратных корней не подчиняются этому закону. С другой стороны, не исключено, что если собрать все числа, появившиеся в передовицах нескольких местных газет в вашем городе за неделю, они будут распределяться по этой формуле. Но почему же так получается? Что общего у городского населения в штате Массачусетс со смертностью от землетрясений во всем мире и с числами из статей в « Reader ’ s Digest »? И почему этому же правилу подчиняются числа Фибоначчи?
Строго доказать закон Бенфорда математическими методами оказалось совсем не просто. Одним из главных препятствий стал именно тот факт, что подчиняются этому закону не все перечни чисел – и даже приведенные примеры из ежегодника « World Almanac » не вполне ему соответствуют. В статье об этом законе в журнале « Scientific American », опубликованной в 1969 году, математик Ральф А. Райми из Рочестерского университета сделал вывод, что «ответ остается неясным».
Объяснить этот закон удалось лишь в 1995–1996 годах, и сделал это математик из Технологического института в Джорджии Тед Хилл. Хилл заинтересовался законом Бенфорда в начале девяностых, когда готовил доклад о сюрпризах вероятности. Вот как он вспоминал об этом в беседе со мной: «Я начал работать над этой задачей для развлечения, однако многие коллеги предупреждали меня, что надо быть осторожным, поскольку закон Бенфорда вызывает наркотическое привыкание». После нескольких лет работы Теда наконец осенило, что не нужно рассматривать числа из одного конкретного источника: главное – это смесь данных . Хилл переформулировал закон Бенфорда статистически в новой форме: «Если распределения подбираются случайно (любым непредвзятым способом) и из каждого распределения выбираются случайные образцы, то частота встречаемости цифр на значимом месте в смеси образцов сходится к распределению Бенфорда, даже если некоторые отдельные выбранные распределения не подчиняются этому закону». Иными словами, предположим, что вы собрали случайный набор чисел из мешанины распределений – например, из таблицы квадратных корней, таблицы смертности в сенсационных авиакатастрофах, населения округов и расстояний между теми или иными городами на планете по воздуху. Некоторые эти распределения сами по себе не будут подчиняться закону Бенфорда, но Хилл доказал, что чем больше вы соберете подобных чисел, тем ближе встречаемость цифр в этих числах будет к предсказанной законом Бенфорда. Так почему же этому закону подчиняются и числа Фибоначчи? Ведь они-то строго определены рекурсивным соотношением, это не случайные образцы из случайных распределений.
Так вот, в этом случае выясняется, что соответствие закону Бенфорда свойственно не только числам Фибоначчи, но и другим подобным последовательностям. Если исследовать большой массив различных степеней двойки (2 1 = 2, 2 2 = 4, 2 3 = 8 и т. д.), станет видно, что они тоже подчиняются закону Бенфорда. Удивляться этому не следует, если учесть, что сами по себе числа Фибоначчи – это степени золотого сечения (вспомним, что n -ное число Фибоначчи близко к φ n /√5). В сущности, можно доказать, что закону Бенфорда подчиняются последовательности, заданные большим классом рекурсивных соотношений.
Закон Бенфорда – очередной поразительный пример того, как чистая математика превращается в прикладную. В числе прочих занятных способов применения этого закона – выявление подделки и фабрикации данных в бухгалтерии и при уклонении от налогов. Данные из самых разных финансовых документов всегда очень хорошо соответствуют закону Бенфорда. А сфабрикованные данные – очень редко. Хилл доказал, как работает этот метод выявления мошенничества, на одном простом примере при помощи теории вероятности. На первом занятии своего курса по теории вероятностей Хилл просит студентов провести эксперимент. Если девичья фамилия их матери начинается с букв от А до L , они должны подбросить монетку 200 раз и записать результат – сколько было орлов и сколько решек. Остальным студентам предлагается подделать результат 200 бросков монетки, то есть создать случайную последовательность орлов и решек. На следующем занятии Хилл собирает результаты и очень быстро определяет, где результат подлинный, а где поддельный, и в 95 % случаев не ошибается. Как ему это удается? В любой последовательности из 200 бросков монетки, если ее действительно бросали, с большой вероятностью попадается по шесть орлов или шесть решек подряд. А когда кто-то пытается подделать последовательность из 200 бросков монетки, им кажется, что такого уж точно не может быть.
Недавно закон Бенфорда применили для выявления финансовых махинаций в одном американском туристическом бюро. Директор по аудиту обнаружил что-то странное в отчете начальника отдела медицинского страхования компании. Первые две цифры в суммах выплат на медицинскую страховку, когда эти данные проверили на соответствие закону Бенфорда, почему-то тяготели к 65 (более подробно о том, как закон предсказывает и вторую и далее цифры, см. в Приложении 9). Тщательный аудит выявил тринадцать поддельных чеков на суммы от 6500 до 6599 долларов. В управлении окружного прокурора в нью-йоркском районе Бруклин при помощи проверок на основе закона Бенфорда также выявили бухгалтерские подделки в семи нью-йоркских фирмах.
Читать дальшеИнтервал:
Закладка: