Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
- Название:Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0730-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. краткое содержание
В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.
Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Племя, состоящее из n кланов, является несократимым тогда и только тогда, когда подгруппа S n, порожденная перестановками f и g, является транзитивной.
Объединив это утверждение с предложением 1, получим, что для изучения несократимых обществ, удовлетворяющих трем нашим условиям, необходимо знать: а) какие циклические подгруппы S nтранзитивны и б) какие прямые произведения двух циклических подгрупп S nтранзитивны. Нетрудно видеть, что подгруппа Н
76
группы Sn может быть транзитивной только тогда, когда она содержит по меньшей мере n элементов. Допустим, что эта подгруппа содержит m элементов, где m < n.
Обозначим их через h 1, h 2... h m. С M 1будут связаны следующие разновидности брака: h 1(M 1), h 2(M 2) ... h m(M m). В лучшем случае все они будут различны, однако этот перечень никогда не будет полным, так как он содержит m элементов, а m меньше n. Применив некоторые другие свойства симметрической группы, найти циклические транзитивные подгруппы S nнесложно, однако давайте остановимся на этом — иначе мы никогда не закончим наш разговор о браках!
Племя мурнгин
ЛЕВИ-СТРОСС: Хотя ваши объяснения по сути намного лучше тех, что преддожили первые антропологи, во всех рассмотренных нами примерах они смогли решить поставленную задачу явным перебором всех возможных сочетаний. Теория групп абсолютно необходима тогда, когда число кланов по-настоящему велико или же когда в правилах заключения браков экзогамия сочетается с эндогамией.
Я понял это, едва начав изучать племя аборигенов мурнгин, живущих на севере Австралии, в Арнем-Ленде. Незадолго до того как я начал работу над докторской, один из крупнейших специалистов по австралийским аборигенам Адольфус Петер Элкин указал, что исключительно формальный анализ систем родства у аборигенов не имеет смысла, поскольку никак не помогает узнать обычаи племени.
Но четко изучить структуры родства у аборигенов мурнгин было крайне важно, так как это племя представляло собой одну из немногих систем ограниченного обмена, в которых различались браки между двоюродными братьями и сестрами: брак с дочерью брата матери разрешался, а брак с дочерью сестры отца — нет. Так как ни одна из известных в то время систем не позволяла объяснить это различие, некоторые авторы выбрали более простое решение — они попросту отказались от анализа закономерностей. Но как может столь точное правило, в котором различаются двоюродные братья и сестры и которое является логичным следствием определенной исходной конфигурации, появиться в системе, не подчиняющейся никаким нормам?
Племя мурнгин делится на два сообщества, иритча и дуа, а каждое из них состоит из четырех кланов. Эти кланы называются нгарит, булаин, каийярк, бангарди, бураланг, баланг, кармарунг и вармут. Названия кланов не имеют особого значения — будем обозначать кланы A 1, A 2, B 1, B 2, C 1, C 2, D 1и D 2Сразу же возникает аномалия, характерная для всех племен этого региона: мужчины не всегда обязаны искать себе жену в другом клане. Существуют две альтернативные формулы, (I)
77
и (II). Первая описывает браки внутри одной и той же половины племени, вторая — в разных. Эти формулы представлены на иллюстрации:

Неизменным остается правило, по которому мать определяет клан своих детей.
Это правило выглядит следующим образом:

ВЕЙЛЬ: Чтобы это общество удовлетворяло нашим условиям, необходимо предположить, что формула, применимая к конкретному человеку, зависит только от его пола и от разновидности брака его родителей, (I) или (II). Для каждого клана определены две разновидности брака, следовательно, имеем 16 различных правил.
Вместо того чтобы обозначить их через М 1, M 2... М 16, введем не совсем обычные обозначения, которые помогут упростить расчеты. Во-первых, поставим в соответствие каждому клану племени тройку из нулей и единиц (а, b, с), где
а = 0 для клана А или В, а = 1 для клана С или D,
b = 0 для клана А или С, b = 1 для клана В или D,
с = 0 если номер группы равен 1, и с = 1, если номер группы равен 2.
К примеру, человек из группы А 1будет обозначаться тройкой (0, 0, 0), другой человек из группы В 2— тройкой (0, 1, 1). Верно и обратное: для любой тройки единиц и нулей, к примеру (1, 0, 0), соответствующий клан определяется единственным образом. Так как первое число тройки равно 1, ей соответствует клан С или D. Так как второе число тройки равно 0, ей соответствует клан А или С. Оба этих условия выполняются только в одном случае — если человек принадлежит к клану С. Так как последнее число в тройке равно 0, рассматриваемый человек — член группы С 1
78
ЛЕВИ-СТРОСС: Теперь следует обозначить разновидности браков.
ВЕЙЛЬ: Действительно. Мы обозначили каждый клан тройкой чисел (а, b, с).
Добавим к ней четвертую координату, чтобы уточнить формулу брака. Так, каждое правило M iбудет обозначаться четырьмя числами (a, f>, с, d), которые могут равняться 1 или 0. Первые три числа (а, b, с) указывают клан, к которому принадлежит мужчина, вступающий в брак, а четвертое число равно 0 или 1 в зависимости от того, по какой формуле заключается брак — (I) или (II). К примеру, в браке (1, 0, 0, 1) мужчина клана (1, 0, 0), то есть С 1вступает в брак по формуле (II). Следовательно, его женой будет женщина из клана D 2, то есть (1,1,1). Клан детей также определяется однозначно: в этом примере они будут принадлежать к клану В2, то есть (0, 1,1). Имеем:
Разновидности брака (1,0,0,1)
Клан отцов (1,0,0)
Клан матери (1,1,1)
Клан детей (0,1,1)
Основная причина, по которой мы выбрали эти обозначения из единиц и нулей, заключается в том, что теперь мы можем выразить отношения родства с помощью циклической группы ℤ/2. Чтобы обеспечить максимальную точность, все нули и единицы следовало бы записать в квадратных скобках, но не будем усложнять обозначения. Благодаря выбранной нотации предыдущий пример можно обобщить, применив две леммы, приведенные ниже.
Лемма 1. В браке разновидности (a, b, с, d) жена принадлежит к клану (а, b + 1, c + d)
В самом деле, мужчины, вступающие в брак по правилу (a,b, с, d), принадлежат к клану (a, b, с). Заметим, что вне зависимости от формулы брака представители кланов А и В всегда будут жениться между собой, равно как и представители кланов С и D.
Так как а = 0 для клана А или В, а = 1 для клана С или D, то первое число в обозначении женщины и мужчины будет одинаковым. Посмотрим, что произойдет со вторым числом. Для этого вновь отметим, что вне зависимости от формулы брака мужчины из кланов А и С будут жениться на женщинах из кланов В и D. Следовательно, если b = 0, то второе число в обозначении женщины будет равно 1.
Читать дальшеИнтервал:
Закладка: