Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
- Название:Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0730-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. краткое содержание
В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.
Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
ЛЕВИ-СТРОСС: Раз мы заговорили о великих математиках прошлого, я не могу не спросить вот о чем: вас не беспокоило, что их труды отличались меньшей строгостью и четкостью, чем ваши?
ВЕЙЛЬ: Вы правы, это была одна из самых больших опасностей. Допускаю, что мы не всегда умели держать дистанцию. Мне повезло: историю математики мне преподавал Макс Деи, один из двух человек в моей жизни, кто заставил меня думать о Сократе. Этот удивительный преподаватель считал, что математика — лишь одно из множества зеркал, в которых отражается истина (возможно, четче, чем в остальных). Он организовал во Франкфуртском университете семинар, где планировал читать великие труды с точки зрения их авторов, не требуя от математиков прошлого того, чего позволял достичь лишь современный формализм. Этим же путем я проследовал при работе над книгой об истории теории чисел: я изобразил математиков за работой, чтобы читатель смог понять, как мыслили мудрецы разных эпох, начиная от вавилонян эпохи Хаммурапи, записавших пифагоровы тройки на табличке Плимптон, и заканчивая Лежандром и его «Опытом теории чисел».
ЛЕВИ-СТРОСС: Это та книга, которая начинается с китайской каллиграммы?
ВЕЙЛЬ: Она самая! Я попросил моего коллегу, математика Шиинг-Шена Черна написать его прекрасным каллиграфическим стилем китайскую пословицу «Старый конь знает дорогу». Поэтому на следующей странице приведена фотография барельефа с гробницы императора Тай-цзуна с изображением коня. Я счел, что эта пословица прекрасно отражает мое решение заняться историей математики, так как с возрастом мне все сложнее было вести активную исследовательскую работу. Вы не представляете, сколько математиков в последние годы жизни пали духом из-за того, что утратили прежнюю остроту ума. Я не хотел разделить их участь и стал историком. Ну вот, я заговорил о старости. Миф, связывающий математику с юностью, правдив лишь отчасти: в самом деле, некоторые математики, прожив очень короткую жизнь, навсегда оставили след в истории, однако нельзя в точности сказать, в каком возрасте угасают творческие способности. Харди в своей «Апологии математика» называет возраст в 35 лет — не потому ли, что в этом возрасте он счел,
21

Китайская пословица «Старый конь знает дорогу».
будто уже никогда не сможет доказать новых теорем? Не будем далеко ходить за примером: я сам создал лучшие из своих трудов после 35.
ЛЕВИ-СТРОСС: Тем не менее «пенсионный возраст» для членов группы Бурбаки был четко определен.
ВЕЙЛЬ: А за тем, чтобы он неукоснительно соблюдался, следил я! Не помню, когда именно мы решили, что возраст членов группы не может превышать 50 лет.
Преемственность поколений стала одной из причин успеха Бурбаки: лучшие студенты из каждого выпуска присоединялись к группе на правах подопытных кроликов,
22
и многие из них позднее становились полноправными членами коллектива. Между ними и нами существовала огромная разница: нас обучали математике по-старому, а они были первыми, кто изучил математику по-новому; они были нашими учениками. Мне кажется, французская математика второй половины XX века не знала бы таких успехов без этой плеяды студентов, работавших над общими темами при подготовке книги.
ЛЕВИ-СТРОСС: Возможно, никто не ожидал, что в 50 лет умрет и сам Бурбаки.
ВЕЙЛЬ: На самом деле это неудивительно. Наше видение математики намного лучше соответствовало дисциплинам, проверенным временем, а не тем, что находились в процессе развития. Я мог бы дать структуре формальное определение, но чтобы вы лучше меня поняли, я воспользуюсь метафорой из мира архитектуры.
Между прочим, одна из самых известных книг Бурбаки носит название «Архитектура математики». Структура — это форма, количество и взаимное положение различных частей здания, связанных между собой соединительными элементами, которые обеспечивают прочность конструкции. Структура есть нечто абстрактное: к примеру, функция арки не зависит от того, из какого материала сделан ее свод.
Структуры в математике позволяют одновременно изучать все объекты с одинаковыми свойствами — структура учитывает не их природу, а отношения между ними.
Два объекта, внешне весьма различные, могут быть воплощениями одного и того же архетипа: если мы отбросим все излишества, останется структура, нечто инертное и неизменное. Мы, члены группы Бурбаки, решили описать все структуры с помощью теории множеств, однако, быть может, настало время переформулировать исходный вопрос, на который мы стремились найти ответ. Быть может, следовало задуматься над вопросом: существует ли математика по-прежнему как единое целое?
23
Глава 2 Элементарные структуры
Подобно математике и музыке, этнография — одно из немногих подлинных занятий. Вы можете открыть ее сами, даже если никто не обучал вас ей.
Леви-Стросс, «Печальные тропики»ВЕЙЛЬ: Господин Леви-Стросс, должен признаться, меня удивляет, что такой умный человек, как вы, изучал философию.
ЛЕВИ-СТРОСС: Боюсь, то были ошибки молодости. Впрочем, я вскоре оставил философию и занялся этнологией. Вы же с годами стали философом. Или вы уже забыли о своей статье «От метафизики к математике»?
ВЕЙЛЬ: Я бы назвал ее «историей идей». Если бы вы прочли ее, то узнали бы, что математики XVIII века называли метафизикой ряд нечетких аналогий, которые не могли определить точно, но тем не менее применяли в своих исследованиях. Мне не кажется, что это большой комплимент в адрес философии.
ЛЕВИ-СТРОСС: Называйте ее как хотите, господин Вейль. В любом случае, я пришел к философии потому, что с детства был открыт разнообразию мира. Если у всех еврейских семей и есть какая-то отличительная черта (мы оба прекрасно это знаем), то это преклонение перед культурой, активная интеллектуальная деятельность, которая не пропадает даже тогда, когда забыты все религиозные обряды. Евреи не только становились «торговцами или раввинами», как гласит поговорка,— никакой торговец не хотел, чтобы все дети унаследовали его дело и никто из них не проявил себя в учении. Когда мне нужно было определить дальнейший жизненный путь, меня интересовало слишком многое: я разрывался между живописью, музыкой и изучением древностей. Но мой отец был художником, и я на себе ощутил все финансовые трудности, с которыми может быть связано это занятие. А чтобы стать музыкантом, я был недостаточно талантлив, хотя не отказался бы дирижировать оркестром. Я подумал, что если стану изучать философию, а не какую-то другую науку, то не слишком отдалюсь от своих любимых занятий.
Читать дальшеИнтервал:
Закладка: