Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума
- Название:Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0715-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума краткое содержание
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Теорема доказана. Объясняет ли это доказательство суть увиденного нами? Нет. Перед нами пример того, как логика доказывает, но не объясняет. В данном случае логика не объясняет, потому что из доказательства мы не можем понять, почему ситуация складывается именно так, а не иначе. Вернемся в начало доказательства и обратим внимание на часть исходной фигуры:

Возможно, в этом контексте она покажется вам знакомой. Проведем вспомогательную линию — единственно возможную для завершения рисунка:

Результат построения — треугольники APD и QPS . Так как точки А и D — середины сторон PQ и PS соответственно, то отрезок AD параллелен QS , а его длина в два раза меньше длины QS . Последнее утверждение известно как теорема о средней линии — она заслуживает отдельного упоминания, так как не столь очевидна, как может показаться.
Проведя аналогичные рассуждения для вершины R исходной фигуры, получим, что отрезок ВС параллелен QS . Так как A D и ВС параллельны QS , они параллельны между собой, а четырехугольников CD — параллелограмм.
Несомненно, только в геометрическом контексте теорема наполняется смыслом, а объяснить ситуацию помогает доказательство, в котором используется теорема Фалеса.

Однако, подобно творцам от математики, не следует останавливаться на этом.
Пауль Матуссек, которого мы цитировали в первой главе, говорил, что творческий ум работает постоянно. Так, прямым следствием этой теоремы является то, что стороны параллелограмма ABCD параллельны диагоналям четырехугольника PQRS . Можно задать и другие вопросы: что произойдет, если мы будем делить стороны исходного четырехугольника не пополам, а на три, четыре и более частей?

Здесь в игру вступают компьютерные программы для рисования и обработки геометрических фигур, которые позволяют наглядно представить ситуацию и могут навести на новые вопросы. Рисунки ниже были сделаны с помощью программы, позволяющей произвольно перемещать вершины исходного четырехугольника. При этом возникают весьма необычные четырехугольники и параллелограммы:

Нельзя избавиться от ощущения, что некоторые из этих фигур представляют собой изображения трехмерных многогранников на плоскости. Теорема Вариньона покидает пределы плоскости и выходит в пространство. Современные технологии помогли нам сломать незримые границы, поставленные исходной формулировкой задачи. Как следствие, возникли новые вопросы: верна ли теорема Вариньона, если стороны исходного четырехугольника пересекаются? А если одна из вершин четырехугольника совпадает с какой-либо из остальных и таким образом четырехугольник превращается в треугольник? Какими свойствами будет обладать этот треугольник и каким будет соотношение между ним и параллелограммом внутри него? При каких условиях теорема будет выполняться в пространстве, если мы заменим четырехугольник многогранником, а параллелограмм — параллелепипедом?
2000 год был объявлен Международным годом математики. В мире прошли многочисленные конгрессы, а в научных и учебных центрах состоялись различные мероприятия, посвященные математике. Эта дата навела автора на новый вопрос:
можно ли представить число 2000 в виде суммы последовательных натуральных чисел?
Так появилась теорема о числах, которая ранее не была известна автору этой книги и его коллегам. Год публикации первого издания этой книги — 2010. Это число достаточно круглое, чтобы можно было вновь задаться вопросом:
можно ли представить число 2010 в виде суммы последовательных натуральных чисел?
Оно не является суммой двух последовательных натуральных чисел:
2010 = 1005 +1005 = 1004 +1006.
Однако его можно представить как сумму трех или четырех последовательных чисел:
2010 = 669 + 670 + 671.
2010 = 501 + 502 + 503 + 504.
Можно ли представить любое натуральное число в виде суммы последовательных натуральных чисел? Очевидно, что всякое натуральное число можно представить как сумму одного последовательного числа — самого себя. Запишем сумму k последовательных натуральных чисел:
( n + 1) + ( n + 2) +… + ( n + k ) = k · n + (1 + 2 + … + k ).
Сумма чисел в скобках рассчитывается по формуле из предыдущей главы:

В нашем случае:

С одной стороны, если k — четное, то 2 n + k также будет четным, а 2 n + k + 1 будет нечетным. С другой стороны, если k — нечетное, то k + 1 четное, и 2 n + k + 1 также будет четным.
В любом случае один из множителей в знаменателе будет нечетным.
Следовательно, сумма последовательных чисел имеет как минимум один нечетный делитель. Это означает, что в виде суммы последовательных натуральных чисел можно представить только числа, имеющие нечетный делитель. Так как у чисел, являющихся степенями 2, нет нечетных делителей, имеем следующую теорему:
только числа, которые являются степенями 2, нельзя представить как сумму последовательных натуральных чисел.
Приведя подобные слагаемые в суммах последовательных чисел, увидим, откуда появляется этот нечетный множитель:

Если число слагаемых n нечетное, этим нечетным множителем будет n , если же число слагаемых n четное, то этим нечетным множителем будет 2 n + 1. В любом случае один из сомножителей будет нечетным.
* * *
КАРЛ ФРИДРИХ ГАУСС(1777–1855)
Этот немецкий математик, который родился в Брауншвейге и умер в Гёттингене, был вундеркиндом. Он получил хорошее образование благодаря не отцу, а матери. Гаусс никак не мог решить, что ему следует изучать — философию или математику. В начале весны 1796 года он сделал выбор в пользу математики, и наука весьма благодарна ему за это, так как Гаусс в итоге стал одним из величайших математиков всех времен. Несомненно, на его решение повлиял тот факт, что в тот самый весенний день ему удалось построить с помощью циркуля и линейки правильный 17-угольник. Как математик Гаусс совершил много важных открытий, но этим успехом он гордился больше всего — настолько, что попросил высечь этот многоугольник на своем надгробии, на что мастер возразил, что высечь эту фигуру будет очень сложно и ее будет почти невозможно отличить от окружности.
Читать дальшеИнтервал:
Закладка: