Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Тут можно читать онлайн Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 15. От абака к цифровой революции. Алгоритмы и вычисления
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • ISBN:
    978-5-9774-0710-6
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления краткое содержание

Том 15. От абака к цифровой революции. Алгоритмы и вычисления - описание и краткое содержание, автор Бизенц Торра, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.

По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления - читать онлайн бесплатно полную версию (весь текст целиком)

Том 15. От абака к цифровой революции. Алгоритмы и вычисления - читать книгу онлайн бесплатно, автор Бизенц Торра
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Существовало две системы обозначений. В первой за основу было взято вертикальное положение палочек, что можно видеть на следующей иллюстрации, где слева направо записаны числа от 1 до 9.

Во второй системе за основу было взято горизонтальное положение палочек как - фото 46

Во второй системе за основу было взято горизонтальное положение палочек, как показано далее. Здесь тоже представлены числа от 1 до 9.

Эта система счисления использовалась на табличках где для представления чисел - фото 47

Эта система счисления использовалась на табличках, где для представления чисел цифры записывались по-разрядно. Например, число 4508 на такой табличке записывалось следующим образом.

Как вы можете видеть в записи чисел участвовали обе системы одновременно - фото 48

Как вы можете видеть, в записи чисел участвовали обе системы одновременно: вертикально расположенные палочки обозначали единицы, сотни и так далее; палочки, расположенные горизонтально, — десятки, тысячи и следующие разряды. Если одна из цифр равнялась нулю, соответствующая позиция оставалась пустой, как вы можете видеть на примере записи числа 4508. Аналогичным образом записывались отрицательные числа. Положительные и отрицательные числа различались цветом палочек: для записи положительных чисел использовались красные палочки, для записи отрицательных — черные.

Арифметические действия выполнялись на той же табличке с теми же палочками. Сложение и вычитание производились путем добавления палочек или удаления их с доски. Были известны методы умножения и деления, а также алгоритмы выполнения других алгебраических операций, в частности нахождения корней многочленов.

Система вычислений с помощью палочек также появилась в Корее и Японии (точный период неизвестен). Известно, что эта система применялась в Японии в период правления императрицы Суйко (593–628) под названием санги.

Абак был известен в Китае начиная со II в. до н. э. под названием суаньпань. Китайский абак делился на две части: костяшки верхней части обозначали пять единиц (либо десять, сто и так далее), а каждая костяшка в нижней части обозначала единицу. Подобным образом на две части делился и римский абак. Учитывая длительную торговлю Римской империи с Китаем, некоторые исследователи всерьез полагают, что римский и китайский абак были созданы под влиянием друг друга.

Учитель объясняет ученикам китайской школы округа Чжэньцзян как пользоваться - фото 49

Учитель объясняет ученикам китайской школы округа Чжэньцзян, как пользоваться абаком. 1938 год.

Китайский абак появился в Японии примерно в XVI веке и был известен как соробан. Он появился благодаря торговцам, однако его распространение было непростым. Лишь спустя много лет он был введен в школах и начал использоваться для решения сложных математических задач. В торговле соробан быстро заменил ранее применявшиеся устройства, однако они по-прежнему использовались в высшей математике.

Для обозначения цифр и в Китае, и в Японии (системы счисления в этих странах очень похожи) использовались девять идеограмм.

Для обозначения десятков сотен тысяч и следующих разрядов эти символы - фото 50

Для обозначения десятков, сотен, тысяч и следующих разрядов эти символы записывались рядом со следующими идеограммами:

При записи чисел использовались символы от 1 до 9 вместе с символами десятков - фото 51

При записи чисел использовались символы от 1 до 9 вместе с символами десятков, сотен и так далее. Например, число 10563 записывалось следующим образом:

Том 15 От абака к цифровой революции Алгоритмы и вычисления - изображение 52

что расшифровывается так:

Следует упомянуть что в отличие от системы используемой в большинстве - фото 53

Следует упомянуть, что в отличие от системы, используемой в большинстве европейских языков, в основе которой лежит тысяча (10 3), в китайской системе в основе кратных величин лежит 10 4. Следовательно, 132000 записывается как 13·(104) + 2000.

В виде идеограмм это число будет представлено так:

Том 15 От абака к цифровой революции Алгоритмы и вычисления - изображение 54
Число π в Китае

Китайцы разработали алгоритмы для вычисления числа π . Великий математик Лю Хуэй, живший около 300 года во времена царства Вэй, возникшего после распада империи Хань, первым создал метод вычисления числа π . Живший до него ученый и изобретатель Чжан Хэн(78—139) , который создал прибор для определения землетрясений за 1700 лет до появления первого сейсмографа, получил приближенное значение π , равное 3,1724. Также использовались значения 3,162 (корень из 10) и 3,156. В III веке астроном Вань Фань, живший в царстве У, использовал последнее значение, равное дроби 142/45.

Первый метод, использованный Лю Хуэем для нахождения приближенного значения π , заключался в бисекции многоугольников. С помощью многоугольника с 96 сторонами он вычислил, что π лежит в интервале между 3,141024 и 3,142708. Он использовал приближенное значение, равное 157/50, так как считал значение 3,14 достаточно точным.

Китайские марки посвященные ученым Лю Хуэюслева и Чжану Хэнусправа Лю - фото 55

Китайские марки, посвященные ученым Лю Хуэю(слева) и Чжану Хэну(справа).

Лю Хуэй использовал шестиугольник со стороной L , вписанный в окружность. Далее число сторон многоугольника последовательно удваивалось. Иными словами, сначала рассматривался шестиугольник, затем 12-угольник, далее — 24-угольник (24 = 12·2), 48-угольник (48 = 24·2) и так далее. На каждом шаге Лю Хуэй вычислял площадь многоугольника с N сторонами и длину стороны многоугольника с числом сторон, равным 2 N .

Будем обозначать за l длину стороны многоугольника с 2 N сторонами. Используем теорему Пифагора: для данного прямоугольного треугольника с гипотенузой h и двумя катетами длиной с 1 и с 2 выполняется равенство h 2= с 1 2+ с 2 2.

Вычисление длины стороны lпо известному значению L где L длина стороны - фото 56

Вычисление длины стороны lпо известному значению L, где L— длина стороны шестиугольника, I — длина стороны 12-угольника,

О— центр окружности, Аи В— две вершины шестиугольника, С — новая вершина, Р— точка на стороне шестиугольника, равноудаленная от Аи В. Радиус окружности равен r, расстояние от центра до Р равно R.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бизенц Торра читать все книги автора по порядку

Бизенц Торра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 15. От абака к цифровой революции. Алгоритмы и вычисления отзывы


Отзывы читателей о книге Том 15. От абака к цифровой революции. Алгоритмы и вычисления, автор: Бизенц Торра. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x