Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
- Название:ВОЛШЕБНЫЙ ДВУРОГ
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1967
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ краткое содержание
«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.
Для среднего и старшего возраста.»
Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.
ВОЛШЕБНЫЙ ДВУРОГ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Радикс усмехнулся.
— Как сказать! — проворчал он. — Как сказать! Если ты уж так хорошо все понял, то возьми-ка переверни шашки. На них ведь сзади, как ты помнишь, написано «Тетушка Дразнилка».
Вынь одну шашку… Ну, для памяти вынем ту, на которой стоит буква «ша». Потом перепутай шашки и проверь на буквах, как получается насчет правила «выйдет-не-выйдет». А коли заметишь какие-нибудь особенности, не поленись дать исчерпывающее объяснение. Да, кстати, вот еще что. Скажи, пожалуйста: известно ли тебе, что бывают уравнения со многими неизвестными?

— Ну еще бы! — отвечал Илюша — Конечно, известно.
Так вот, представь себе, что Дразнилка имеет довольно близкое касательство к решению систем уравнений со многими и даже весьма многими неизвестными.
— Да что ты? — удивился мальчик.
— Дело в том, — продолжал Радикс, — что если тебе, допустим, придет в голову точно определить, как можно вывести общие формулы, определяющие значения неизвестных в зависимости от коэффициентов в уравнениях, то придется заняться тем же самым, чем мы сейчас с тобой забавлялись, а именно — подсчитать число инверсий. Если не струсишь, то советую проверить это. Давай напишем систему уравнений:
a 1 x + b 1 y + c 1 z = d 1
a 2 x + b 2 y + c 2 z = d 2
a 3 x + b 3 y + c 3 z = d 3
и найдем, чему равняется у .
— Это что-то трудновато, — неопределенно заметил Илюша.
— Для простоты положим, что х и z уже известны и нам надо определить через них у . Ну-ка попробуй, что получится.
— 110 —
Илюша взял карандаш, задумался на минутку и написал следующее выражение для у :
y = ( d 1— a 1 x — c 1 z ) / b 1
— Очень мило! Ну, а еще чего-нибудь ты не придумаешь?
— Можно подставить это значение у в остальные два уравнения, тогда останутся неизвестными только х и z .
— Можно. А далее?
— А далее поступаю подобным же образом. Определю из одного из уравнений z и подставлю его в последнее оставшееся уравнение. Получу, очевидно, значение для х . А его можно подставить в предыдущую формулу для z и так далее.
Все определится очень просто. Только бы не запутаться во всех этих подстановках.
— Так, — закончил Радикс, — верно. Придется тебе еще подумать, кстати, о том, чтобы у этих твоих дробей, которые определяют неизвестные, знаменатели не обращались в нуль.
Но если оставить это пока в стороне, то формулы ты получишь верные. О них-то я и хотел тебе сказать несколько слов.
Займись-ка, выпиши, что получается окончательно в знаменателе дробей. Если ты нигде не напутал, то получится алгебраическая сумма произведений:
a 1 b 2 c 3; a 1 b 3 c 2; a 2 b 1 c 3; a 2 b 3 c 1; a 3 b 1 c 2; a 3 b 2 c 1;
А что касается знаков перед ними, то они как раз тем и определяются, какое число инверсий, четное или нечетное, образуют числа «один», «два» и «три» в подписных значках у букв a , b и с , если мы будем писать эти три буквы каждый раз в их алфавитном порядке, как это у нас и сделано. Если при четном числе инверсий брать знак плюс, а при нечетном — минус, то получится алгебраическая сумма, которая называется определителем, или детерминантом, данной системы уравнений. Ты можешь еще заметить, что и числители дробей построены так же, только там вместо одной из букв а , b или с (в зависимости от того, какое ты неизвестное определяешь) поставлена буква d (для икса d заменяет букву а , для игрека — букву b , для зета — букву с ). Если мы захотим определить знак перед каждым произведением, то для этого достаточно того, что мы вывели, когда разбирали маленького Дразнилку. А дальше дело пойдет, разумеется, похитрее. Мы еще вспомним нашего друга Дразнилку, когда будем разбирать одну довольно сложную задачу в Схолии Девятнадцатой.
— 111 —
— Теперь уже я буду относиться к Дразнилке посерьезнее. Вот какая он, оказывается, знатная персона!
— Кстати, — задумчиво произнес Радикс. — Ты, кажется, уверял меня по поводу младшего Дразнилки, что из трех элементов можно образовать всего шесть комбинаций?
— Разумеется, — уверенно ответил Илюша.
— Как это мило!.. — еще более задумчиво произнес его приятель. — И ты уверен, что больше шести не может быть?
— Конечно, уверен!
— Так, значит, шесть! И все разные. Это очень важно. Ровно шесть, говоришь ты?.. Это приводит мне на память один престранный случай. В архиве одного нотариуса города Толедо, в Испании, была обнаружена следующая запись, относящаяся к началу восемнадцатого столетия:
«После кончины достопочтенного дона Диего дель Кастильо в его доме было найдено завещание, согласно которому три драгоценных ларчика — бронзовый, серебряный и золотой — были оставлены трем его друзьям юности: дону Альваро, дону Бенито и дону Висенте, причем условие завещания гласило:
«Означенные предметы переходят во владение моих друзей по их выбору, который должен происходить в следующем порядке:
1) тот, кто видел меня в зеленом плаще, не может выбирать раньше дона Альваро;
2) если дон Висенте не был в Саламанке в тысяча шестьсот девяносто четвертом году, то, значит, тот, кто будет выбирать первым, никогда не давал мне своей табакерки;
3) дон Альваро и дон Бенито могут выбирать во вторую очередь только в том случае, если дон Бенито будет выбирать раньше того, кто первый стал носить шпагу…»
Когда вышеупомянутые лица, как того требует закон, были вызваны в суд, то они показали, что завещание это было составлено лет пятнадцать назад и поэтому сейчас никто из них не может вспомнить, о каком зеленом плаще идет речь, какое имела табакерка отношение к городу Саламанке, и так далее. Однако им известно, что в то давнишнее время дон Диего не раз говорил о том, что он имеет намерение оставить каждому из них хороший подарок. Тогда судья прочел им заключительные строки этого удивительного завещания, где говорилось:
Читать дальшеИнтервал:
Закладка: