Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Тут можно читать онлайн Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Детская литература, год 1967. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ВОЛШЕБНЫЙ ДВУРОГ
  • Автор:
  • Жанр:
  • Издательство:
    Детская литература
  • Год:
    1967
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ краткое содержание

ВОЛШЕБНЫЙ ДВУРОГ - описание и краткое содержание, автор Сергей Бобров, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

Для среднего и старшего возраста.»

Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.

ВОЛШЕБНЫЙ ДВУРОГ - читать онлайн бесплатно полную версию (весь текст целиком)

ВОЛШЕБНЫЙ ДВУРОГ - читать книгу онлайн бесплатно, автор Сергей Бобров
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

— Но это еще не все, — добавил Радикс. — Дело в том, что наиплотнейшее расположение шаров в пространстве, даже в три только слоя, зависит от того, в какие лунки ты кладешь ядра и какие ты пропускаешь. Чтобы это стало совершенно ясным, составим тетраэдры в два слоя так, чтобы соприкасающиеся углы их совпали, и допустим, что эти два слоя тянутся безгранично далеко. У каждого из тетраэдров есть вершина, которая изображает в нашей схеме шар второго слоя. Теперь я хочу добавить еще третий слой, но добавить его не сверху, а снизу. И при этом я могу действовать двумя способами. Либо я к каждому основанию моего тетраэдра приклею основание еще одного (чтобы они совпали и слились воедино), и тогда вершина второго тетраэдра будет стоять симметрично относительно вершины первого. Это первый способ наиплотнейшего расположения шаров в

Наиболее плотное расположение кругов на плоскости 122 Четыре тетраэдра - фото 105

Наиболее плотное расположение кругов на плоскости.

— 122 —

Четыре тетраэдра план Заштрихованные треугольники основания трех нижних - фото 106

Четыре тетраэдра (план). Заштрихованные треугольники — основания трех нижних тетраэдров; кружки — вершины этих тетраэдров ( А , В , С ); звездочка — положение верхнего шара, то есть вершины четвертого тетраэдра, основание которого совпадает с пунктирным треугольником ABC .

пространстве. Однако можно действовать и по-другому, то есть приложить основание второго тетраэдра к той впадине, которая образуется между двумя рядом стоящими тетраэдрами. Тогда третий, нижний слой шаров будет расположен так, что его можно перевести в первый при помощи того же смещения, которое переводит первый ряд во второй. Комбинируя эти два основных способа укладки, можно получить различные расположения шаров в пространстве. Так вот, куча из ядер, о которой мы с тобой сейчас толкуем, построена по…

— Второму способу! — закончил Илюша. — Ну, теперь ясно, что на Арамиса должны нападать трое сверху, трое снизу и шесть человек со всех сторон! Выходит не так, как всегда говорят: «со всех четырех сторон», а со всех двенадцати сторон! Интересно, сколько же в куче будет всего ядер? Наверху — одно, в следующем слое — столько, сколько видно сбоку в первом треугольнике, то есть три, а в следующем — столько, сколько во втором треугольнике; это будет еще на три ядра больше, значит, шесть. Потом будет уже на четыре больше — десять. Как же считать?

Четыре тетраэдра вид сбоку Об этом ты узнаешь в Схолии Одиннадцатой а - фото 107

Четыре тетраэдра (вид сбоку).

— Об этом ты узнаешь в Схолии Одиннадцатой, а пока продолжай складывать.

— В первом и втором слоях вместе: один да три — четыре.

— Квадрат двух, — подсказал Радикс. — А во втором и третьем?

— Три и шесть — девять,

— 123 —

Первый способ наиплотнейшего расположения шаров Шары верхнего слон кружки - фото 108

Первый способ наиплотнейшего расположения шаров. Шары верхнего слон (кружки) закрывают шары нижнего слоя (крестики).

опять квадрат. А шесть и десять-шестнадцать, опять квадрат.

— Три и шесть — девять, опять квадрат. А шесть и десять — шестнадцать, опять квадрат. Как интересно! Значит, очень просто эти слои считать: вычти число последнего слоя из следующего квадрата и получишь то, что надо. Следующий квадрат будет двадцать пять. Вычитаю десять, и выходит пятнадцать. Так?

— Твое наблюдение правильно. Это треугольные числа.

— Как интересно! — воскликнул Илюша. — И для всякого числа есть свое название! А выходит, что шесть — это очень знатное число: оно и совершенное и треугольное! Теперь: сколько же всего ядер выходит в куче?

Один слой — одно. Два слоя — четыре. Три слоя — десять. Четыре слоя — двадцать. Пять слоев — тридцать пять.

Строение селитры по МВ Ломоносову 1763 г А это пирамидальные числа Ну - фото 109

Строение селитры по М.В. Ломоносову (1763 г.)

— А это пирамидальные числа.

— Ну да, потому что выходит пирамида из ядер.

— Конечно, — сказал Радикс. — Такое расположение имеет важное значение при изучении места отдельных

— 124 —

атомов или молекул в кристаллах. Они там тоже так уложены. Представь себе, что математики пришли к этой мысли раньше, чем физики! И все эти числа получить очень просто. Возьми-ка мел и пиши. В первом столбике напиши одну под другой пять единиц; во втором — те числа, которые ты видишь в пирамиде ядер сбоку; в третьем столбике — треугольные числа, а в четвертом — пирамидальные.

Илюша взял мел и написал то, что изображено справа. Смотри какая у тебя получилась табличка Каждое число в любой строке равно - фото 110

— Смотри, какая у тебя получилась табличка. Каждое число в любой строке равно сумме того числа, которое стоит над ним, и того, которое стоит слева от него. Видишь?

— Верно, — отвечал Илюша. — Например, десять равно шести плюс четыре!

— А теперь, — продолжал его друг, — ты видишь, что эту табличку очень легко продолжить по этому правилу. Добавь-ка еще четыре единички в первой строке и три в первом столбце и заполни таблицу. И в каждой строке пиши одним числом меньше, чем в верхней. Ну-ка, пиши поскорей!

Илюша написал единицы и у него получилась табличка изображенная слева Эта - фото 111Илюша написал единицы, и у него получилась табличка, изображенная слева.

— Эта замечательная табличка называется треугольником Паскаля, — сказал Радикс, — потому что она была составлена французским математиком семнадцатого века Блезом Паскалем.

— Это тот самый, про которого ты вспоминал, когда Великий Змий пришел пробирать нас? — спросил Илюша.

— Он самый, — торжественно произнес Радикс. — Эту табличку до Паскаля, веком раньше, построили итальянские математики. Но в то время известия о новых открытиях распространялись не так быстро, как теперь. Мало того, что этот треугольник дает натуральные числа, треугольные, пирами-

— 125 —

дальние и многие другие, которые в общем называются фигурными числами, он дает еще более полезные и важные указания. Вот я его сейчас перепишу по-другому.

Радикс взял мел и написал то что изображено слева Посмотри сказал он - фото 112Радикс взял мел и написал то, что изображено слева.

— Посмотри, — сказал он. — Тебе эти цифры ничего не напоминают?

Илюша внимательно посмотрел новую табличку, подумал, потом сказал:

— Один, два, один — это похоже на сто двадцать один, то есть на квадрат одиннадцати.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Бобров читать все книги автора по порядку

Сергей Бобров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ВОЛШЕБНЫЙ ДВУРОГ отзывы


Отзывы читателей о книге ВОЛШЕБНЫЙ ДВУРОГ, автор: Сергей Бобров. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x