Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
- Название:ВОЛШЕБНЫЙ ДВУРОГ
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1967
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ краткое содержание
«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.
Для среднего и старшего возраста.»
Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.
ВОЛШЕБНЫЙ ДВУРОГ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
— 332 —
математикам в руки способ (метод) для рассмотрения и решения труднейших задач, где геометрия и алгебра помогают друг другу. Именно метод координат и аналитическая геометрия помогли решить одну замысловатую задачу, над которой математики бились с давних пор.
— А какая это задача? — спросил Илюша.
— Это была знаменитая задача о проведении касательной. А построить касательную к окружности нетрудно.

Касательная к окружности перпендикулярна к радиусу.
— Конечно, — отвечал Илюша, — потому что эта касательная перпендикулярна к радиусу.
— Правильно. Ну, а как ты проведешь касательную к любой другой кривой? Ну, например, к той же параболе? Или к кривой обратных величин, то есть к гиперболе? У параболы, например, нет радиуса.
Илюша задумался.
— А что, если сделать так. Например, надо провести касательную к данной точке параболы. Я начерчу окружность, очень похожую на параболу на этом ее кусочке, вроде тех кругов, которыми Коникос мерил кривизну. А к окружности касательную провести ничего не стоит.
— Представь себе, что и мысль Декарта шла примерно таким же образом. Нужно тебе сказать, что и до Декарта мате—
Кривая сначала поднимается (ордината ее растет), и касательная образует с положительным направлением оси абсцисс острый угол α

Кривая затем опускаетсся (ордината ее убывает), и касательная образует с полжительным направлением оси абсцисс тупой угол β
— 333 —
матики проводили касательные к различным кривым, но только у них не было общего правила для этого. Перпендикуляр к касательной, как мы уже говорили в Схолии Четырнадцатой, называется нормалью кривой в данной точке. Так вот Декарт и нашел общее правило для построения нормалей. А отсюда уже не так-то трудно перейти и к самим касательным.
— Это интересно, — сказал Илюша. — Но разве это так важно — уметь провести касательную к любой кривой?

В точке, соответствующей х , кривая достигает максимума и касательная становится параллельной оси абсцисс.

Чем скорее растет ордината кривой, тем больше угол α и его тангенс.
— Сперва казалось, что это просто одна из трудных геометрических задач. Однако Декарт во второй книге своей «Геометрии» писал:
«Я готов даже сказать, что эта задача является самой полезной и обладает наибольшей общностью не только из тех задач, которые мне известны, но даже изо всех тех, которые мне хотелось когда бы то ни было узнать». Кеплер в своем сочинении о стереометрии винных бочек отметил некоторые особые свойства кривых, которые тесно связаны с касательными их. Мы вот сейчас говорили о том, что у кубической параболы есть максимум и минимум. Если ты внимательно посмотришь на график этой кривой, то заметишь, что ордината этой параболы сперва растет очень скоро, а потом все медленнее и медленнее. В точке максимума ее рост прекращается, а потом начинает падать.
— Так, — сказал Илюша. — А с минимумом наоборот: падает, падает, потом останавливается в точке минимума, а потом снова начинает расти.
— Молодец! — похвалил Радикс. — Кое-как соображаешь.
— 334 —
— Кое-как могу, когда не очень трудно, — отвечал мальчик, — да и то потому, что ты помогаешь.
— Отчего же и не помочь человеку, если он старается разобраться в том, что ему объясняют! Ну, а теперь пораскинь-ка мозгами и ответь мне на такой вопрос: что будет делать касательная к этой кривой, если я буду строить ее для различных точек кубической параболы и на чертеже брать эти точки одну за другой слева направо до максимума и после него?
Как будет наклонена касательная по отношению к положительному направлению оси абсцисс?
— По-моему, — сказал Илюша, — она до максимума будет наклонена в одну сторону, а после максимума — в другую.
— Это верно, — сказал Радикс, — а поточнее? Какой угол будет образовывать касательная с положительным направлением оси абсцисс, если мы продолжим касательную до пересечения с этой осью- до максимума и после него?
— До максимума, — ответил Илюша, — кривая поднимается, значит, верхняя часть касательной будет образовывать с положительным направлением оси абсцисс острый угол, а после максимума кривая опускается, зна—
График параболы четвертого порядка.
У этой кривой два максимума и один минимум (или наоборот); она пересекает ось абсцисс дважды…

… или четырежды.

— 335 —
чит, верхняя часть касательной образует с положительным направлением оси абсцисс тупой угол.
— Круглая пятерочка! — воскликнул Радикс. — Отвечай, юноша, что же будет с касательной в точке максимума?
— Не знаю!.. Ах да! Очень просто. Она будет параллельна оси абсцисс. Она ведь скользит по кривой и поворачивается, а в точке максимума станет совершенно горизонтально.
А потом уже повернется в другую сторону.
— А почему она поворачивается?
— Потому что ордината кривой, приближаясь к максимуму, растет все медленнее, а потом, после максимума, сейчас же начинает уменьшаться.
— Молодчага! — сказал Радикс. — Вот тебе и ясно, какая польза от касательной. Она показывает, как изменяется скорость роста ординат кривой, указывает, где находится максимум или минимум. При ее помощи можно решать задачи на нахождение максимумов, имеющих очень большое значение в технике. Как сделать из данного куска железа цилиндр наибольшей вместимости? Как сделать брус, который обладал бы наибольшей прочностью? Все эти задачи решаются при помощи метода касательных. А чтобы все было проще и ясней, мы просто будем рассматривать угол, который касательная образует с положительным направлением оси абсцисс, и характеризовать его при помощи его тангенса. Мы всегда можем построить прямоугольный треугольник, где отрезки, параллельные осям координат, будут катетами и гипотенуза будет направлена по касательной. Этот треугольник впервые был построен Архимедом при изучении спиралей, а затем после Паскаля и Барроу (ко времени Ньютона) он стал важным орудием анализа и сыграл немалую роль в развитии математики. Отношение катетов этого треугольника и будет искомым тангенсом угла наклона касательной к положительному направлению оси абсцисс.
Читать дальшеИнтервал:
Закладка: