Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
- Название:Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9400-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ирина Якутенко - Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать краткое содержание
Что мы знаем о SARS-CoV-2, почему он убивает одних и бессимптомно проходит у других, безопасна ли вакцина и когда будет найдено лекарство, как мы лечим COVID-19 без него, можно ли бороться с патогеном, не закрывая планету, — книга отвечает на эти и многие другие вопросы. Хотя пандемия еще не закончилась, и мы все время получаем новые данные о вирусе, изложенные в тексте фундаментальные основы уже не поменяются: они служат каркасом, на который читатель сможет нанизывать новые знания.
Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Помимо магистрального пути через ACE2, коронавирус, вероятно, может забираться в клетки, используя еще один рецептор под названием CD147. Это трансмембранный белок — он как бы протыкает клеточную мембрану насквозь, и одна его часть торчит наружу, а другая — внутрь клетки. CD147 присутствует на множестве разных типов клеток, в том числе в репродуктивном тракте, мышцах, мозге, глазах, эпителии, иммунных клетках, нейронах и так далее. В экспериментах по заражению вирусом культур клеток блокировка CD147 останавливала распространение SARS-CoV-2. Цепляется вирус за этот рецептор при помощи все того же спайк-белка, хотя в лабораторных экспериментах связывание было не очень сильным [108] K. Wang et al. , «SARS-CoV-2 invades host cells via a novel route: CD147-spike protein», bioRxiv , p. 2020.03.14.988345, Jan. 2020.
. Еще одно косвенное свидетельство, что CD147 может быть причастным к заражению коронавирусом: у людей старшего возраста и/или тех, у кого есть избыточный вес, ген, кодирующий рецептор CD147, работает более активно [109] U. Radzikowska et al. , «Distribution of ACE2, CD147, CD26 and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors», Allergy , p. all.14429, Jun. 2020.
. Как мы подробно обсудим ниже, возраст и избыток массы тела — главные факторы риска для заражения и тяжелого течения COVID-19. Но действительно ли CD147 играет заметную роль в патогенезе коронавирусной инфекции — непонятно, и на фоне множества других загадок, связанных с SARS-CoV-2, изучением этого рецептора никто всерьез не занимался. Возможно, в будущем, когда ситуация в мире нормализуется, мы узнаем про него что-нибудь интересное.
Течение болезни
Итак, вирус тем или иным способом проникает в организм, его спайк-белок связывается с рецепторами ACE2, разрезается одной из клеточных протеаз, после чего изменяет конформацию, «подтягивает» вирусную частицу к самой поверхности клетки, ее мембрана сливается с клеточной, и содержимое оказывается внутри. SARS-CoV-2 перехватывает управление клеточными процессами и начинает размножаться, параллельно мешая клетке сообщить иммунной системе о вторжении (мы подробно обсуждали эти процессы в главе «Как устроен коронавирус»). Свежесобранные вирусные частицы выходят в межклеточное пространство и заражают новых жертв — но опять же, только если на поверхности этих клеток есть рецептор ACE2, а еще лучше — ACE2 и одна или сразу обе протеазы, которые невольно помогают SARS-CoV-2 забираться под мембрану.
Легкое течение
Если вирус проник в организм стандартным путем — через рот или нос, первое время его размножение проходит незаметно: максимум человек почувствует першение в горле или начнет слегка покашливать, чтобы избавиться от неприятного ощущения и скапливающейся в глотке слизи. Слизь — свидетельство того, что иммунная система распознала вторжение и начала атаковать врага сперва неспецифическим оружием, то есть средствами врожденного иммунитета. Выделяемые участниками пока невидимой битвы вещества стимулируют гиперпродукцию слизи не просто так: это важный компонент нашего арсенала противопатогенных защит. Вирусные частицы застревают в вязком секрете и не могут добраться до незараженных клеток — параллельно их добивают содержащиеся в слизи иммунные клетки. Все это клейкое месиво выводится из организма: скопления слизи подталкиваются наверх движениями специальных реснитчатых клеток, а затем выкашливаются или высмаркиваются. У курильщиков клетки дыхательных путей сильно повреждены, поэтому слизь плохо выводится — и плохо образуется. Возможно, именно поэтому вирусу проще преодолевать этот уровень защиты и пробираться сразу к легким.
Что именно происходит во время этих первых схваток иммунитета с вирусом и почему у некоторых людей развивается полноценная болезнь с температурой и пневмонией, а кто-то отделывается легким покашливанием или вообще не замечает, что его организм встречался с инфекцией, — не совсем ясно. Впрочем, мы не знаем ответа на этот вопрос и для множества других болезней, например тех же простуд. Туманные разговоры о «более сильном иммунитете» только подчеркивают, насколько плохо мы понимаем подлежащие механизмы. Благодаря коронавирусу исследователи, возможно, начнут чуть лучше разбираться в деталях того, как работает наша иммунная система.
COVID-19 — респираторное заболевание, так что его основные симптомы мало отличаются от простуд и гриппа. Исследования статистики по большому числу больных показали, что чаще всего у заразившихся появляются температура и сухой кашель. Еще несколько наиболее распространенных симптомов — слабость, мышечная и головная боль, быстрая утомляемость, одышка, боль в горле, изменение или потеря обоняния и вкуса. Реже встречаются кишечные проявления (понос, тошнота и рвота) и совсем редко — насморк. Большинство этих симптомов — проявления так называемого общетоксического влияния вируса на организм. Грубо говоря, вирус размножается, иммунная система сражается с ним и для облегчения борьбы запускает реакцию воспаления (мы подробно поговорим об этом дальше в этой главе). Больное горло, кашель и проблемы с пищеварением — следствие размножения вируса в дыхательных путях и ЖКТ. Если болезнь начинает развиваться по нехорошему сценарию, могут появиться стесненность в груди, сильная одышка и затрудненность дыхания. Появление этих признаков — повод немедленно обратиться за медицинской помощью, так как они указывают на значительное поражение легких.
Некоторые части пазла уже начали складываться. Так, большой коллектив швейцарских ученых выявил, что хотя бы отчасти легкое течение COVID-19 может быть связано с эффективным ответом местного иммунитета [110] C. Cervia et al. , «Systemic and mucosal antibody secretion specific to SARS-CoV-2 during mild versus severe COVID-19», bioRxiv , p. 2020.05.21.108308, Jan. 2020.
. Обычно, говоря о выработке защитных антител, мы подразумеваем иммуноглобулины типа G (IgG) или M (IgM). Именно их определяют в стандартных тестах на антитела. Однако, помимо этих двух разновидностей, у нас есть еще IgA, IgE и IgD. Они куда менее известны, но не менее важны. В контексте коронавируса нас интересуют прежде всего IgA. Про роль остальных типов антител можно прочитать во врезке ниже.
Про IgA мы знаем, что они самым непосредственным образом участвуют в борьбе с вирусами, в том числе с SARS-CoV-2. Более того, именно от них может зависеть, заболеет человек, встретившийся с вирусом, или нет. Этот тип иммуноглобулинов работает преимущественно не в крови (хотя и там тоже), а в секретируемых жидкостях вроде слез, слюны, грудного молока или пищеварительного сока, а также на слизистых оболочках. Это означает, что IgA — первая линия обороны против любых вторженцев. Несмотря на это, а также на факт, что по количеству иммуноглобулины типа А занимают в организме первое место (ежедневно каждый из нас синтезирует до 8 граммов(!) этих белков), они очень плохо изучены. Тем не менее было показано, что IgA, выделяющиеся преимущественно в виде димеров (двух склеенных основаниями «игреков») или полимеров, умеют обезвреживать многие вирусы, например ВИЧ, вирус Эпштейна — Барр, вирус гриппа и другие. IgA делают это разными способами. Например, облепляют вирусные частицы, мешая им связаться с рецепторами клеток. Или же не дают вирусу, уже проникшему в клетку, реализовать программу по ее захвату, связывая вирусные белки: до того как иммуноглобулины A выделятся в межклеточную среду, они в специальных мембранных пузырьках движутся сквозь пограничные клетки и, если в них проник вирус, атакуют его [111] M. W. Russell, «Biological Functions of IgA», in Mucosal Immune Defense: Immunoglobulin A , C. S. Kaetzel, Ed. Boston, MA: Springer US, 2007, pp. 144–172.
.
Интервал:
Закладка: